相关习题
 0  296220  296228  296234  296238  296244  296246  296250  296256  296258  296264  296270  296274  296276  296280  296286  296288  296294  296298  296300  296304  296306  296310  296312  296314  296315  296316  296318  296319  296320  296322  296324  296328  296330  296334  296336  296340  296346  296348  296354  296358  296360  296364  296370  296376  296378  296384  296388  296390  296396  296400  296406  296414  366461 

科目: 来源: 题型:选择题

15.如图,六边形ABCDEF是正六边形,曲线FK1K2K3K4K5K6K7…叫做“正六边形的渐开线”,其中弧FK1,弧K1K2,弧K2K3,弧K3K4,弧K4K5,弧K5K6,…的圆心依次按点A,B,C,D,E,F循环,其弧长分别记为L1,L2,L3,L4,L5,L6,….当AB=1时,L2016等于(  )
A.$\frac{2016π}{2}$B.$\frac{2016π}{3}$C.$\frac{2016π}{4}$D.$\frac{2016π}{6}$.

查看答案和解析>>

科目: 来源: 题型:选择题

14.把抛物线y=-x2向右平移1个单位,然后向上平移3个单位,则平移后抛物线的解析式为(  )
A.y=-(x-1)2-3B.y=-(x+1)2-3C.y=-(x-1)2+3D.y=-(x+1)2+3

查看答案和解析>>

科目: 来源: 题型:解答题

13.如图示AB为⊙O的一条弦,点C为劣弧AB的中点,E为优弧AB上一点,点F在AE的延长线上,且BE=EF,线段CE交弦AB于点D.
①求证:CE∥BF;  
②若BD=2,且EA:EB:EC=3:1:$\sqrt{5}$,求△BCD的面积(注:根据圆的对称性可知OC⊥AB).

查看答案和解析>>

科目: 来源: 题型:解答题

12.如图,AB是⊙O的直径,C点在⊙O上,连接AC,∠BAC的平分线交⊙O于点D,过点D作DE⊥AC交AC的延长线于点E.
(1)求证:DE是⊙O的切线;
(2)若AB=10,sin∠BAC=$\frac{4}{5}$,连接CD,求CD的长.

查看答案和解析>>

科目: 来源: 题型:解答题

11.如图,Rt△ABC中,∠BAC=90°,D是BC边的中点,连接AD,过点A作AE∥BC,且AE=CD,连接EC.
(1)求证:四边形ADCE是菱形;
(2)如果AC=a,tan∠ABC=$\frac{1}{3}$,写出求菱形ADCE的面积的思路.

查看答案和解析>>

科目: 来源: 题型:解答题

10.如图,直线y=2x+b与双曲线y=$\frac{k}{x}$(k≠0)只有一个公共点A(1,-2).
(1)求k与b的值;
(2)如果直线y=2x+m与双曲线y=$\frac{k}{x}$(k≠0)有两个公共点,请直接写出m的取值范围.

查看答案和解析>>

科目: 来源: 题型:解答题

9.如图,在Rt△ABC中,∠C=90°,AB边的垂直平分线DE交BC于点E,垂足为D.
求证:∠CAB=∠AED.

查看答案和解析>>

科目: 来源: 题型:解答题

8.如图,在Rt△ABC中,∠CAB=90°,以AB为直径的⊙O交BC于点D,点E是AC的中点,连接DE.
(1)求证:DE是⊙O的切线;
(2)点P是$\widehat{BD}$上一点,连接AP,DP,若BD:CD=4:1,求sin∠APD的值.

查看答案和解析>>

科目: 来源: 题型:解答题

7.评价组对某区九年级教师的试卷讲评课的学生参与度进行评价调查,其评价项目为主动质疑、独立思考、专注听讲、讲解题目四项.评价组随机抽取了若干名同学的参与情况,绘制成如图所示的扇形统计图和条形统计图(均不完整),请根据图中所给信息解答下列问题:

(1)在这次评价中,一共抽查了560名同学;
(2)请将条形统计图补充完整;
(3)如果全区有6000名九年级学生,那么在试卷评讲课中,“独立思考”的约有多少人?
(4)根据统计反映的情况,请你对该区的九年级同学提出一条对待试卷讲评课的建议.

查看答案和解析>>

科目: 来源: 题型:解答题

6.顺义区某中学举行春季运动会,初二年级决定从本年级300名女生中挑选64人组成花束方队,要求身高基本一致,这个工作交给年级学生会体育部小红、小冬和小芳来完成.
为了达到年级的选拔要求,小红、小冬和小芳各自对本学校初二年级的女生身高进行了抽样调查,将收集的数据进行了整理,绘制的统计表分别为表1、表2和表3.
表1 小红抽样调查初二年级4名女同学身高统计表(单位:cm)
序号1234
身高155160165172
表2  小冬抽样调查初二年级15名女同学身高统计表(单位:cm)
序号123456789101112131415
身高148149150152152160160165166167168169170171175
表3 小芳抽样调查初二年级15名女同学身高统计表(单位:cm)
序号123456789101112131415
身高145160150152160154160166167168160169173174175
根据自己的调查数据,小红说应选取身高为163cm(数据的平均数)的同学参加方队,小冬说应选取身高为165cm(数据的中位数)的同学参加方队,小芳说应选取身高为160cm(数据的众数)的同学参加方队.
根据以上材料回答问题:
小红、小冬和小芳三人中,哪一位同学的抽样调查及得出的结论更符合年级的要求,并简要说明符合要求的理由,同时其他两位同学的抽样调查或得出结论的不足之处.

查看答案和解析>>

同步练习册答案