相关习题
 0  296238  296246  296252  296256  296262  296264  296268  296274  296276  296282  296288  296292  296294  296298  296304  296306  296312  296316  296318  296322  296324  296328  296330  296332  296333  296334  296336  296337  296338  296340  296342  296346  296348  296352  296354  296358  296364  296366  296372  296376  296378  296382  296388  296394  296396  296402  296406  296408  296414  296418  296424  296432  366461 

科目: 来源: 题型:解答题

8.列方程或方程组解应用题:
已知有23人在甲处劳动,17人在乙处劳动.现共调20人去支援,要使在甲处劳动的人数是在乙处劳动的人数的2倍,问应调往甲、乙两处各多少人?

查看答案和解析>>

科目: 来源: 题型:解答题

7.某企业设计了一款工艺品,每件的成本是50元,为了合理定价,投放市场进行试销.据市场调查,销售单价是100元时,每天的销售量是50件,而销售单价每降低1元,每天就可多售出5件,但要求销售单价不得低于成本.
(1)求出每天的销售利润y(元)与销售单价x(元)之间的函数关系式;
(2)如果该企业要使每天的销售利润不低于4000元,且每天的总成本不超过7000元,那么销售单价应控制在什么范围内?(每天的总成本=每件的成本×每天的销售量)

查看答案和解析>>

科目: 来源: 题型:填空题

6.甲、乙两车分别从A、B两地同时出发,甲车匀速前往B地,到达B地立即以另一速度按原路匀速返回到A地,乙车匀速前往A地,中途与甲车相遇后休息了一会儿,然后以原来的速度继续行驶直到A地.设甲、乙两车距A地的路程为y(千米),甲车行驶的时间为x(时).y与x之间的函数图象如图所示,则乙车到达A地时甲车距B地的路程为150千米.

查看答案和解析>>

科目: 来源: 题型:填空题

5.某天早晨,小刚从家跑步去体育场锻炼,同时妈妈从体育场晨练结束回家,途中两人相遇,小刚跑到体育场后发现要下雨,立即以另一速度按原路返回,遇到妈妈后,妈妈立即以小刚返回的速度和小刚一起回家(妈妈与小刚行进的路线相同).如图是两人离家的距离y(米)与小刚出发的时间x(分)之间的函数图象,则小刚第一次和妈妈相遇时,妈妈离家的距离为2000 米.

查看答案和解析>>

科目: 来源: 题型:解答题

4.如图,点P在菱形ABCD的对角线AC上,PA=PD,⊙O为△APD的外接圆.
(1)求证:△APD∽△ADC.
(2)若AD=6,AC=8,求⊙O的半径.

查看答案和解析>>

科目: 来源: 题型:填空题

3.现有一个圆心角为90°,半径为12cm的扇形纸片,用它恰好围成一个圆锥的侧面(接缝忽略不计),该圆锥底面圆的半径为3cm.

查看答案和解析>>

科目: 来源: 题型:填空题

2.因式分解:9x2-9=9(x+1)(x-1).

查看答案和解析>>

科目: 来源: 题型:填空题

1.若实数a、b满足(a+b)(a+b-6)+9=0,则a+b的值为3.

查看答案和解析>>

科目: 来源: 题型:解答题

20.某商品的进价为每件40元,当售价为每件60元时,每星期可卖出300件,现需降价处理,且经市场调查,每降价1元,每星期可多卖出20件,在确保盈利的前提下,解答下列问题:
(1)若设每件降价x(x为整数)元,每星期售出商品的利润为y元,请写出x与y之间的函数关系式,并求出自变量x的取值范围;
(2)请画出上述函数的大致图象.
(3)当降价多少元时,每星期的利润最大?最大利润是多少?
小丽解答过程如下:
解:(1)根据题意,可列出表达式:
y=(60-x)(300+20x)-40(300+20x),
即y=-20x2+100x+6000.
∵降价要确保盈利,∴40<60-x≤60.解得0≤x<20.
(2)上述表达式的图象是抛物线的一部分,函数的大致图象如图1:
(3)∵a=-20<0,
∴当x=-$\frac{b}{2a}$=2.5时,y有最大值,y=$\frac{4ac-{b}^{2}}{4a}$=6125.
所以,当降价2.5元时,每星期的利润最大,最大利润为6125.
老师看了小丽的解题过程,说小马第(1)问的表达式是正确的,但自变量x的取值范围不准确.(2)(3)问的答案,也都存在问题.请你就老师说的问题,进行探究,写出你认为(1)(2)(3)中正确的答案,或说明错误原因.

查看答案和解析>>

科目: 来源: 题型:解答题

19.解方程:$\frac{3}{x-2}$-$\frac{1}{x}$=$\frac{3}{{x}^{2}-2x}$.

查看答案和解析>>

同步练习册答案