相关习题
 0  296666  296674  296680  296684  296690  296692  296696  296702  296704  296710  296716  296720  296722  296726  296732  296734  296740  296744  296746  296750  296752  296756  296758  296760  296761  296762  296764  296765  296766  296768  296770  296774  296776  296780  296782  296786  296792  296794  296800  296804  296806  296810  296816  296822  296824  296830  296834  296836  296842  296846  296852  296860  366461 

科目: 来源: 题型:填空题

2.计算:3×($\frac{2016-\sqrt{201{6}^{2}-12×2017}}{2×3}$)2-2016×$\frac{2016-\sqrt{201{6}^{2}-12×2017}}{2×3}$=-2017.

查看答案和解析>>

科目: 来源: 题型:填空题

1.用简便方法计算:$\sqrt{1{3}^{2}+3{9}^{2}}$=13$\sqrt{10}$.

查看答案和解析>>

科目: 来源: 题型:选择题

20.“儿童节”前夕,某校社团进行爱心义卖活动,先用800元购进第一批康乃馨,包装后售完,接着又用400元购进第二批康乃馨,已知第二批所购数量是第一批所购数量的三分之一,且康乃馨的单价比第一批的单价多1元,设第一批康乃馨的单价是x元,则下列方程中,正确的是(  )
A.$\frac{800}{x}+1=\frac{400}{x}$B.$\frac{800}{x}=\frac{400}{x+1}$C.$\frac{1}{3}×\frac{800}{x}=\frac{400}{x+1}$D.800x=3×400(x+1)

查看答案和解析>>

科目: 来源: 题型:解答题

19.如图,AB是⊙O的直径,且AB=2cm,点P为弧AB上一动点(不与A,B重合),$\widehat{AD}$=$\widehat{BD}$,过点D作⊙O的切线交PB的延长线于点C.
(1)试证明AB∥CD;
(2)填空:
①当BP=1cm时,PD=$\sqrt{2}$+$\sqrt{6}$cm;
②当BP=$\sqrt{2}$cm时,四边形ABCD是平行四边形.

查看答案和解析>>

科目: 来源: 题型:选择题

18.下列各式计算正确的是(  )
A.${(-\frac{1}{2}{ab}^{2})}^{2}$=$\frac{1}{4}$ab4B.(-1+b)(-b-1)=1-b2C.5xy2-xy2=4D.(a-b)2=a2+b2

查看答案和解析>>

科目: 来源: 题型:解答题

17.九年级七班“数学兴趣小组”对函数的对称变换进行探究,以下是探究发现运用过程,请补充完整.
(1)操作发现,在作函数y=|x|的图象时,采用了分段函数的办法,该函数转化为y=$\left\{\begin{array}{l}{x}&{x≥0}\\{-x}&{x<0}\end{array}\right.$,请在如图1所示的平面直角坐标系中作出函数的图象;
(2)类比探究
作函数y=|x-1|的图象,可以转化为分段函数$y=\left\{\begin{array}{l}{x-1(x≥1)}\\{-x+1(x<1)}\end{array}\right.$,然后分别作出两段函数的图象.聪明的小昕,利用坐标平面上的轴对称知识,把函数y=x-1在x轴下面部分,沿x轴进行翻折,与x轴上及上面部分组成了函数y=|x-1|的图象,如图2左图所示;
(3)拓展提高
如图2右图是函数y=x2-2x-3的图象,请在原坐标系作函数y=|x2-2x-3|的图象;
(4)实际运用
1)函数y=|x2-2x-3|的图象与x轴有2个交点,对应方程|x2-2x-3|=0有2个实根;
2)函数y=|x2-2x-3|的图象与直线y=5有2个交点,对应方程|x2-2x-3|=5有2个实根;
3)函数y=|x2-2x-3|的图象与直线y=4有3个交点,对应方程|x2-2x-3|=4有3个实根;
4)关于x的方程|x2-2x-3|=a有4个实根时,a的取值范围是0<a<4.

查看答案和解析>>

科目: 来源: 题型:解答题

16.如图,AB是⊙O的直径,点P是弦AC上一动点(不与A,C重合),过点P作PE⊥AB,垂足为E,射线EP交$\widehat{AC}$于点F,交过点C的切线于点D.
(1)求证:DC=DP;
(2)若直径AB=12cm,∠CAB=30°,
①当E是半径OA中点时,切线长DC=4$\sqrt{3}$cm:
②当AE=3cm时,以A,O,C,F为顶点的四边形是菱形.

查看答案和解析>>

科目: 来源: 题型:解答题

15.如图,抛物线y=ax2+bc+c(a>0)的顶点为M,若△MCB为等边三角形,且点C,B在抛物线上,我们把这种抛物线称为“完美抛物线”,已知点M与点O重合,BC=2.
(1)求过点O、B、C三点完美抛物线y1的解析式;
(2)若依次在y轴上取点M1、M2、…Mn分别作等边三角形及完美抛物线y1、y2、…y3,其中等边三角形的相似比都是2:1,如图,n为正整数.
①则完美抛物线a,y2=2$\sqrt{3}$x2+$\sqrt{3}$,完美抛物线y3=4$\sqrt{3}$x2+$\frac{3\sqrt{3}}{2}$;完美抛物线yn=2n-1$\sqrt{3}$x2+$\frac{{2}^{n-1}-1}{{2}^{n-2}}$$\sqrt{3}$;
②直接写出Bn的坐标;
③判断点B1、B2、…、Bn是否在同一直线,若在,求出直线的解析式,若不在同一直线上,说明理由.

查看答案和解析>>

科目: 来源: 题型:解答题

14.如图,圆形靠在墙角的截面图,A、B分别为⊙O的切点,BC⊥AC,点P在$\widehat{AmB}$上以2°/s的速度由A点向点B运动(A、B点除外),连接AP、BP、BA.
(1)当∠PBA=28°,求∠OAP的度数;
(2)若点P不在AO的延长线上,请写出∠OAP与∠PBA之间的关系;
(3)当点P运动几秒时,△APB为等腰三角形.

查看答案和解析>>

科目: 来源: 题型:解答题

13.如图,在△ABC中,∠ACB=90°,点D是AB上一点,以BD为直径的⊙O和AB相切于点P.
(1)求证:BP平分∠ABC;
(2)若PC=1,AP=3,求BC的长.

查看答案和解析>>

同步练习册答案