相关习题
 0  296710  296718  296724  296728  296734  296736  296740  296746  296748  296754  296760  296764  296766  296770  296776  296778  296784  296788  296790  296794  296796  296800  296802  296804  296805  296806  296808  296809  296810  296812  296814  296818  296820  296824  296826  296830  296836  296838  296844  296848  296850  296854  296860  296866  296868  296874  296878  296880  296886  296890  296896  296904  366461 

科目: 来源: 题型:选择题

8.已知直线y=kx+b经过A(3,10),B(0,5)两点,则不等式kx+b>0的解集为(  )
A.x>-3B.x<-3C.x>3D.x<3

查看答案和解析>>

科目: 来源: 题型:选择题

7.若点P(2a-8,2-a)在第三象限内,且a为整数,则a的值是(  )
A.1B.2C.3D.4

查看答案和解析>>

科目: 来源: 题型:解答题

6.解不等式(2x+1)(3x-2)>0时,根据有理数乘法法则“两数相乘,同号得正”有$\left\{\begin{array}{l}{2x+1>0}\\{3x-2>0}\end{array}\right.$①,或$\left\{\begin{array}{l}{2x+1<0}\\{3x-2<0}\end{array}\right.$②,解不等式①,得x>$\frac{2}{3}$;解不等式②,得x<$-\frac{1}{2}$,则不等式(2x+1)(3x-2)>0的解集为x>$\frac{2}{3}$或x<$-\frac{1}{2}$,请参照例题,解不等式$\frac{5x+1}{2x-3}$≤0.

查看答案和解析>>

科目: 来源: 题型:填空题

5.如图,四边形ABCD是一块长方形场地,AB=42米,AD=25米,从A,B两处入口的小路宽都为1米,两小路回合处路宽为2米,其余部分种植草坪,则草坪面积为960平方米.

查看答案和解析>>

科目: 来源: 题型:填空题

4.已知|a|=3,$\sqrt{b}$=2,且ab<0,则a-b=-7.

查看答案和解析>>

科目: 来源: 题型:选择题

3.已知△ABC的三边长为8、12、18,又知△A1B1C1也有一边长为12,且与△ABC相似而不全等,则这样的△A1B1C1个数为(  )
A.0B.1C.2D.3

查看答案和解析>>

科目: 来源: 题型:解答题

2.阅读下列材料:
已知实数x,y满足(x2+y2+1)(x2+y2-1)=63,试求x2+y2的值.
解:设x2+y2=a,则原方程变为(a+1)(a-1)=63,整理得a2-1=63,a2=64,根据平方根意义可得a=±8,由于x2+y2≥0,所以可以求得x2+y2=8.这种方法称为“换元法”,用一个字母去代替比较复杂的单项式、多项式,可以达到化繁为简的目的.
根据阅读材料内容,解决下列问题:
(1)已知实数x,y满足(2x+2y+3)(2x+2y-3)=27,求x+y的值.
(2)填空:
①分解因式:(x2+4x+3)(x2+4x+5)+1=(x+2)4
②已知关于x,y的方程组$\left\{\begin{array}{l}{{a}_{1}x{+b}_{1}y{=c}_{1}}\\{{a}_{2}x{+b}_{2}y{=c}_{2}}\end{array}\right.$的解是$\left\{\begin{array}{l}{x=9}\\{y=5}\end{array}\right.$,关于x,y的方程组$\left\{\begin{array}{l}{{{a}_{1}x}^{2}-{2a}_{1}x{+b}_{1}y{=c}_{1}{-a}_{1}}\\{{{a}_{2}x}^{2}-{2a}_{2}x{+b}_{2}y{=c}_{2}{-a}_{2}}\end{array}\right.$的解是$\left\{\begin{array}{l}{x=4}\\{y=5}\end{array}\right.$或$\left\{\begin{array}{l}{x=-2}\\{y=5}\end{array}\right.$.

查看答案和解析>>

科目: 来源: 题型:选择题

1.如图是王老师去公园锻炼及原路返回时离家的距离y(千米)与时间t(分钟)之间的函数图象,根据图象信息,下列说法正确的是(  )
A.王老师去时所用的时间少于回家的时间
B.王老师去公园锻炼了40分钟
C.王老师去时走上坡路,回家时走下坡路
D.王老师去时速度比回家时速度慢

查看答案和解析>>

科目: 来源: 题型:解答题

20.如图1,在△ABC中,设∠A、∠B、∠C的对边分别为a,b,c,过点A作AD⊥BC,垂足为D,会有sin∠C=$\frac{AD}{AC}$,则
S△ABC=$\frac{1}{2}$BC×AD=$\frac{1}{2}$×BC×ACsin∠C=$\frac{1}{2}$absin∠C,
即S△ABC=$\frac{1}{2}$absin∠C
同理S△ABC=$\frac{1}{2}$bcsin∠A
S△ABC=$\frac{1}{2}$acsin∠B
通过推理还可以得到另一个表达三角形边角关系的定理-余弦定理:
如图2,在△ABC中,若∠A、∠B、∠C的对边分别为a,b,c,则
a2=b2+c2-2bccos∠A
b2=a2+c2-2accos∠B
c2=a2+b2-2abcos∠C
用上面的三角形面积公式和余弦定理解决问题:
(1)如图3,在△DEF中,∠F=60°,∠D、∠E的对边分别是3和8.求S△DEF和DE2
解:S△DEF=$\frac{1}{2}$EF×DFsin∠F=6$\sqrt{3}$;
DE2=EF2+DF2-2EF×DFcos∠F=49.
(2)如图4,在△ABC中,已知AC>BC,∠C=60°,△ABC'、△BCA'、△ACB'分别是以AB、BC、AC为边长的等边三角形,设△ABC、△ABC'、△BCA'、△ACB'的面积分别为S1、S2、S3、S4,求证:S1+S2=S3+S4

查看答案和解析>>

科目: 来源: 题型:解答题

19.如图,直角△ABC中,∠A为直角,AB=6,AC=8.点P,Q,R分别在AB,BC,CA边上同时开始作匀速运动,2秒后三个点同时停止运动,点P由点A出发以每秒3个单位的速度向点B运动,点Q由点B出发以每秒5个单位的速度向点C运动,点R由点C出发以每秒4个单位的速度向点A运动,在运动过程中:
(1)求证:△APR,△BPQ,△CQR的面积相等;
(2)求△PQR面积的最小值;
(3)用t(秒)(0≤t≤2)表示运动时间,是否存在t,使∠PQR=90°?若存在,请直接写出t的值;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案