相关习题
 0  297025  297033  297039  297043  297049  297051  297055  297061  297063  297069  297075  297079  297081  297085  297091  297093  297099  297103  297105  297109  297111  297115  297117  297119  297120  297121  297123  297124  297125  297127  297129  297133  297135  297139  297141  297145  297151  297153  297159  297163  297165  297169  297175  297181  297183  297189  297193  297195  297201  297205  297211  297219  366461 

科目: 来源: 题型:解答题

20.学校举行了主题为“让历史照亮未来”的演讲比赛,其中代表七、八年级参赛的两队各10人的比赛成绩如下表(10分制):
七年级队789710109101010
八年级队10879810109109
(1)请直接写出七年级队成绩的中位数为9.5分,八年级队成绩的众数为10分;
(2)若七、八年级队的平均成绩均为9分,请分别计算七、八年级队的方差.

查看答案和解析>>

科目: 来源: 题型:选择题

19.已知实数a,b,c满足a+b+c=0且a<b<c.则一次函数y=($\frac{c}{a}$+2)x+$\frac{b}{c}$的图象一定经过(  )
A.第一、三象限B.第二、四象限C.第一、三、四象限D.第一、二、三象限

查看答案和解析>>

科目: 来源: 题型:选择题

18.如图,已知AB∥CD,EF⊥CD,若∠1=125°,则∠2的度数为(  )
A.55°B.65°C.25°D.35°

查看答案和解析>>

科目: 来源: 题型:解答题

17.甲、乙两组同学玩“两人背夹球”比赛,即:每组两名同学用背部夹着球跑完规定的路程,若途中球掉落需捡起球并回到掉球处继续跑,用时少者胜.结果:甲组两位同学掉了球;乙组两位同学则顺利跑完.设比赛距出发点用y(m)表示;比赛时间用x(s)表示.则两组同学比赛过程可以用如图所示图象表示.
根据图象提供的信息解答问题:
(1)这是一次多少米的比赛,获胜的是哪组同学?
(2)写出线段AB的实际意义;
(3)求出点C的坐标并说明点C的实际意义.

查看答案和解析>>

科目: 来源: 题型:解答题

16.如图①,△ABC是等腰直角三角形,∠BAC=90°,AB=AC,四边形ADEF是正方形,点B、C分别在AD、AF上,此时BD=CF,BD⊥CF成立.
(1)如图②,
i)当△ABC绕点A逆时针旋转θ(0°<θ<90°)时,线段BD与线段CF的数量关系是BD=CF;直线BD与直线CF的位置关系是BD⊥CF.
ii)请利用图②证明上述结论.
(2)如图③,当△ABC绕点A逆时针旋转45°时,延长DB交CF于点H,若AB=$\sqrt{2}$,AD=3时,求线段FC的长.

查看答案和解析>>

科目: 来源: 题型:解答题

15.某校为了备战2018体育中考,因此在八年级抽取了50名女学生进行“一分钟仰卧起坐”测试,测试的情况绘制成表格如下:
个数162225282930353740424546
人数2171819521112
(1)通过计算算得出这50名女学生进行“一分钟仰卧起坐”的平均数是30,请写出这50名女学生进行“一分钟仰卧起坐”的众数和中位数,它们分别是28、28.
(2)学校根据测试数据规定八年级女学生“一分钟仰卧起坐”的合格标准为28次,已知该校五年级有女生250名,试估计该校五年级女生“一分钟仰卧起坐”的合格人数是多少?

查看答案和解析>>

科目: 来源: 题型:解答题

14.为了解某小区家庭用电情况,小明随机调查了该小区n户家庭2017年4月的用电量(用电量的数据都是整数),并将所得整数绘制成频数分布直方图如图①所示.
(1)求n的值,
(2)小明将所得数据按每户用电量x(度)大小分为三档,①低档:121≤x≤160,②中档:161≤x≤200,③高档:201≤x≤240,并绘制成扇形统计图如图②所示,请帮助他将扇形统计图补充完整.
(3)该地区对居民用电实行“阶梯收费”,规定:用电量不超过200度按第一阶梯电价收费,超过200度的部分按第二阶梯电价收费,根据以上调查结果,估计2017年4月该小区300户家庭仅按第一阶梯电价收费额户数.

查看答案和解析>>

科目: 来源: 题型:解答题

13.随着智能手机的普及,微信抢红包已成为春节期间人们最喜欢的活动之一,某校七年级(1)班班长对全班50名学生在春节期间所抢的红包金额进行统计,并绘制成了统计图.
请根据以上信息回答:
(1)该班同学所抢红包金额的众数是30,中位数是30;
(2)该班同学所抢红包的平均金额是多少元?
(3)若该校共有18个班级,平均每班50人,请你估计该校学生春节期间所抢的红包总金额为多少元?

查看答案和解析>>

科目: 来源: 题型:填空题

12.如图,有一平行四边形ABCD与一正方形CEFG,其中E点在AD上,若∠ECD=35°,∠AEF=15°,则∠B的度数为70度.

查看答案和解析>>

科目: 来源: 题型:解答题

11.如图,在平面直角坐标系中,点A、B分别是x轴、y轴上的点,且OA=a,OB=b,其中a、b满足$\sqrt{a+b-32}$+|b-a+16|=0,将B向左平移18个单位得到点C.
(1)求点A、B、C的坐标;
(2)点M、N分别为线段BC、OA上的两个动点,点M从点B以1个单位/秒的速度向左运动,同时点N从点A以2个三位/秒的速度向右运动,设运动时间为t秒(0≤t≤12).
①当BM=ON时,求t的值;
②是否存在一段时间,使得S四边形NACM<$\frac{1}{2}$S四边形BOAC?若存在,求出t的取值范围;若不存在,说明理由.

查看答案和解析>>

同步练习册答案