相关习题
 0  297489  297497  297503  297507  297513  297515  297519  297525  297527  297533  297539  297543  297545  297549  297555  297557  297563  297567  297569  297573  297575  297579  297581  297583  297584  297585  297587  297588  297589  297591  297593  297597  297599  297603  297605  297609  297615  297617  297623  297627  297629  297633  297639  297645  297647  297653  297657  297659  297665  297669  297675  297683  366461 

科目: 来源: 题型:解答题

20.如图,△ABC中,AB=AC,AD是∠BAC的平分线,交BC于D,过点B作BE⊥AC于E,交AD于F,又知AF=2BD,△BCE与△AFE全等吗?为什么?

查看答案和解析>>

科目: 来源: 题型:解答题

19.把下面的推理过程补充完整,并在括号内注明理由
如图,点B、D在线段AE上,BC∥EF,AD=BE,BC=EF,则AC与DF平行吗?
解:∵BC∥EF(已知)
∴∠ABC=∠FED(两直线平行,同位角相等)
∵AD=BE
∴AD+DB=DB+BE(等式性质)
即AB=DE
在△ABC与△DEF中
$\left\{\begin{array}{l}{AB=DE}\\{∠ABC=∠E}\\{BC=EF}\end{array}\right.$
∴△ABC≌△DEF(SAS)
∴∠A=∠FDE(全等三角形的对应角相等)
∴AC∥DF(同位角相等,两直线平行)

查看答案和解析>>

科目: 来源: 题型:解答题

18.如图,在3×3的正方形格点图中有一格点△ABC(各顶点在格点上的三角形为格点三角形),在图中画出一个与△ABC成轴对称的格点三角形(请画出四种不同的情形)

查看答案和解析>>

科目: 来源: 题型:解答题

17.为了了解某种车的耗油量,我们对这种车在高速公路上做了耗油试验,并把试验的数据记录下来,制成下表:
汽车行驶时间t(h)0123
油箱剩余油量Q(L)100948882
(1)根据上表的数据,写出用t表示Q的关系式;
(2)汽车行驶5h后,油箱中的剩余油量是多少?
(3)若汽车油箱中剩余油量为55L,则汽车行驶了多少小时?
(4)若该种汽车油箱只装了46L汽油,汽车以100km/h的速度在一条全长700公里的高速公路上匀速行驶,请问它在中途不加油的情况下能从高速公路起点开到高速公路终点吗,为什么?

查看答案和解析>>

科目: 来源: 题型:解答题

16.计算:
(1)-2-1-($\frac{1}{2}$)0+22016×(-0.5)2016
(2)(z+x+2y)(-z+x-2y)
(3)运用乘法公式计算126×120-1232
(4)化简,求值:[(x+2y)2-(3x+y)(3x-y)-5y2]÷(2x),其中x=$\frac{1}{2}$,y=-1.

查看答案和解析>>

科目: 来源: 题型:解答题

15.如图,在四边形ABCD中,AD∥BC,∠B=90°,AB=8cm,AD=24cm,BC=30cm.点P从点A出发,以1cm/s的速度向点D移动,点Q从点C出发,以3cm/s的速度向点B运动,点P和点Q分别从点A和点C同时出发,移动时间为ts.规定若其中一个动点先到达端点(终点)时,另一个动点也随之停止运动.
(1)求时间t的取值范围;
(2)当四边形ABQP为矩形时,求时间t的值;
(3)是否存在时间t的值,使得△APQ的面积是△ABC的面积的一半?若存在,请求出t的值,若不存在,说明理由.

查看答案和解析>>

科目: 来源: 题型:解答题

14.(1)解下列方程
①3x-2(x-2)=1
②$\frac{x+4}{5}$-2=$\frac{2x-3}{2}$
(2)当x为何值时,式子x-$\frac{x-1}{3}$的值与7-$\frac{x+3}{5}$的值相等?

查看答案和解析>>

科目: 来源: 题型:解答题

13.如图1,在正方形ABCD中,点E、F分别是边BC、AB上的点,且CE=BF,连接DE、CF.
(1)求证:DE=CF;
(2)在(1)条件下,如图2,过点E作BG⊥DE,且EG=DE,连接FG,试判断:FG与CE的数量关系和位置关系?给出证明.
(3)如图3,若点E、F分别是CB、BA的延长线上的点,其他条件不变,(2)中结论是否仍然成立?请直接写出你的判断.

查看答案和解析>>

科目: 来源: 题型:解答题

12.如图,O为菱形ABCD对角线的交点,M是射线CA上的一个动点(点M与点C,O,A都不重合),过点A,C分别向直线BM作垂线段,垂足分别为E,F,连接OE,OF.
(1)①依据题意补全图形;
②猜想OE与OF的数量关系为OE=OF.
(2)小东通过观察、实验发现点M在射线CA上运动时,(1)中的猜想始终成立.
小东把这个发现与同学们进行交流,通过讨论,形成了证明(1)中猜想的几种想法:
想法1:由已知条件和菱形对角线互相平分,可以构造与△OAE全等的三角形,从而得到相等的线段,再依据直角三角形斜边中线的性质,即可证明猜想;
想法2:由已知条件和菱形对角线互相垂直,能找到两组共斜边的直角三角形,例如其中的一组△OAB和△EAB,再依据直角三角形斜边中线的性质,菱形四边 相等,可以构造一对以OE和OF为对应边的全等三角形,即可证明猜想.

请你参考上面的想法,帮助小东证明(1)中的猜想(一种方法即可).
(3)当∠ADC=120°时,请直接写出线段CF,AE,EF之间的数量关系是EF=$\sqrt{3}$(CF+AE).

查看答案和解析>>

科目: 来源: 题型:解答题

11.某中学七(1)班学习了统计知识后,数学老师要求每个学生就本班学生的上学方式进行一次全面调查,如图是一同学通过收集数据后绘制的两幅不完整的统计图,请根据图中提供的信息,解答下列问题:(每个学生只选择1种上学方式).

(1)求该班乘车上学的人数;
(2)将频数分布直方图补充完整;
(3)若该校2014-2015学年七年级有1200名学生,能否由此估计出该校2014-2015学年七年级学生骑自行车上学的人数,为什么?

查看答案和解析>>

同步练习册答案