相关习题
 0  297832  297840  297846  297850  297856  297858  297862  297868  297870  297876  297882  297886  297888  297892  297898  297900  297906  297910  297912  297916  297918  297922  297924  297926  297927  297928  297930  297931  297932  297934  297936  297940  297942  297946  297948  297952  297958  297960  297966  297970  297972  297976  297982  297988  297990  297996  298000  298002  298008  298012  298018  298026  366461 

科目: 来源: 题型:解答题

19.如图所示,已知△ABC是锐角三角形,以边AC、BC为斜边向形外作等腰直角三角形ACD和等腰直角三角形BCE,以边AB为直角边向形外作等腰直角三角形ABF,∠BAF=90°,点G为BF的中点,连接GD和AE,试探究GD和AE的数量关系和位置关系,并对你的结论加以证明.

查看答案和解析>>

科目: 来源: 题型:选择题

18.如图,某河的同侧有A,B两个工厂,它们垂直于河边的小路的长度分别为AC=2km,BD=3km,这两条小路相距5km.现要在河边建立一个抽水站,把水送到A,B两个工厂去,若使供水管最短,抽水站应建立的位置为(  )
A.距C点1km处B.距C点2km处C.距C点3km处D.CD的中点处

查看答案和解析>>

科目: 来源: 题型:解答题

17.已知△ABC的三边a=m-n(m>n>0),b=m+n,c=2$\sqrt{mn}$.
(1)求证:△ABC是直角三角形;
(2)利用第(1)题的结论,写出两组m,n的值,要求三角形的边长均为整数.

查看答案和解析>>

科目: 来源: 题型:解答题

16.如图是某品牌太阳能热水器的实物图和横断面示意图,已知真空集热管AB与支架CD所在直线相交于水箱横断面⊙O的圆心O,支架CD与水平面AE垂直,AB=150厘米,∠BAC=30°,另一根辅助支架DE=40$\sqrt{3}$厘米,∠CED=60°.
(1)求垂直支架CD的长度;
(2)求水箱半径OD的长度.

查看答案和解析>>

科目: 来源: 题型:解答题

15.如图,在平面直角坐标系中,二次函数y=-x2+x+6的图象与y轴交于点A,与x轴交于B,C两点(点B在点C的左侧),连接AB,AC.
(1)①点B的坐标为(-2,0),点C的坐标为(3,0),AC的长为3$\sqrt{5}$;
②求∠BAC的正弦值
(2)将△AOB沿直线AB折叠得到△AEB,将△AOC沿直线AC折叠得到△AFC,分别延长EB,FC相交于点H
①点H坐标为($\frac{6}{5}$,-$\frac{12}{5}$),点H不在抛物线对称轴上(“在”或“不在”)
②连接EF,将∠BAC绕点A顺时针旋转,射线AB旋转后交线段EH于点B′,交线段EF于点M,射线AC旋转后交线段FH于点C′,交线段EF于点N,当B′H2+C′H2=33时,MN的长度为$\frac{\sqrt{66}}{2}$.

查看答案和解析>>

科目: 来源: 题型:解答题

14.如图,河的两岸l1与l2互相平行,A、B是l1上的两点,C、D是l2上的两点,某同学在A处测得∠CAB=90°,∠DAB=30°,再沿AB方向走20米到达点E(即AE=20),测得∠DEB=60°.
求:C,D两点间的距离.

查看答案和解析>>

科目: 来源: 题型:解答题

13.根据下列问题,列出关于x的方程,并将其化为一般形式.
(1)正方体的表面积是36,求正方体的边长x;
(2)小明用30厘米的铁丝围成一斜边长等于13厘米的直角三角形,该直角三角形的一直角边长x厘米,求该直角三角形的两直角边.

查看答案和解析>>

科目: 来源: 题型:解答题

12.老师让同学们回家准备一根21cm长的细木棒留着课堂上用,小明为了防止木棒折断,想把它放入自己的文具盒中,已知小明的文具盒是一个长20cm,宽8cm的长方体(高与细木棒粗细一致),请问小明准备的木棒能放进他的文具盒吗?

查看答案和解析>>

科目: 来源: 题型:填空题

11.我国古代数学著作《九章算术》中有这样一个问题:今有池方一丈,葭生其中央,出水一尺.引葭赴岸,适于岸齐,问水深、葭长各几何?”这道题的意思是说:“有一个边长为10尺的正方形水池,在水池的正中央长着一根芦苇,芦苇露出水面1尺,若将芦苇拉到水池一边的中点处,芦苇的顶端恰好到达池边的水面,问水的深度与这根芦苇的长度分别是多少?若设水的深度为x尺,则可以得到方程x2+52=(x+1)2

查看答案和解析>>

科目: 来源: 题型:解答题

10.如图1,抛物线y=ax2+bx+c(a>0)与y轴正半轴交于C点,与x轴正半轴交于A,B两点,其中点A在点B左边,D为抛物线的顶点,连AC、BC、AD、BD
(1)若a=1,且∠ACO=∠OBC,求c的值;
(2)∠ADB=120°,求b2-4ac的值;
(3)如图2,直线y=kx+m交抛物线P、Q两点,P在点A左边,Q在点B右边,PM⊥x轴于M,QN⊥x轴于N,AR⊥x轴交直线PQ于R,连RM、QB.直线y=kx+m交x轴正半轴于H点,若S△RMA=4S△QBN,求$\frac{BH}{MH}$的值.

查看答案和解析>>

同步练习册答案