相关习题
 0  297983  297991  297997  298001  298007  298009  298013  298019  298021  298027  298033  298037  298039  298043  298049  298051  298057  298061  298063  298067  298069  298073  298075  298077  298078  298079  298081  298082  298083  298085  298087  298091  298093  298097  298099  298103  298109  298111  298117  298121  298123  298127  298133  298139  298141  298147  298151  298153  298159  298163  298169  298177  366461 

科目: 来源: 题型:解答题

15.已知点P在⊙O内,过点P作⊙O的任意一条弦AB,我们把PA•PB的值称为点P关于⊙O的“幂值”.
(1)⊙O的半径为5,OP=3.
①如图1,若点P恰为弦AB的中点,则点P关于⊙O的“幂值”为16;
②判断当弦AB的位置改变时,试判断点P关于⊙O的“幂值”是否为定值,若是定值,证明你的结论;若不是定值,求点P关于⊙O的“幂值”的取值范围.
(2)若⊙O的半径为r,OP=d,请参考(1)的思路,用含r、d的式子表示点P关于⊙O的“幂值”或“幂值”的取值范围点P关于⊙O的“幂值”为r2-d2
(3)在平面直角坐标系中,⊙O的半径为4,若在直线y=$\frac{\sqrt{3}}{3}$x+b(b>0)上存在点P,使得点P关于⊙O的“幂值”为13,过点O作OP⊥AB,直线OP的解析式为y=-$\sqrt{3}$x,请写出b的取值范围-2≤b≤2.

查看答案和解析>>

科目: 来源: 题型:解答题

14.在平面直角坐标系xOy中,已知点A(0,6),点B(6,0),动点C在以半径为2$\sqrt{2}$的⊙O上,连接OC,AC.
(1)求直线AB的表达式;
(2)当点C在⊙O上运动到什么位置时,AC与⊙O相切?请说明理由.
(3)直线AB经过怎样的平移后与⊙O相切?请写出计算过程加以说明.

查看答案和解析>>

科目: 来源: 题型:选择题

13.下列说法:①相等的弦所对的圆心角相等;②对角线相等的四边形是矩形;③正六边形的中心角为60°;④对角线互相平分且相等的四边形是菱形;⑤计算|$\sqrt{9}$-2|的结果为7;⑥函数y=$\sqrt{x+1}$的自变量x的取值范围是x>-1;⑦$\sqrt{12}$-$\sqrt{27}$的运算结果是无理数.其中正确的个数是(  )
A.1个B.2个C.3个D.4个

查看答案和解析>>

科目: 来源: 题型:解答题

12.阅读理解题:解不等式(x+1)(x-3)>0.
解:根据两数相乘,同号得正,原不等式可以转化为:
$\left\{\begin{array}{l}{x+1>0}\\{x-3>0}\end{array}\right.$或$\left\{\begin{array}{l}{x+1<0}\\{x-3<0}\end{array}\right.$,
解不等式组$\left\{\begin{array}{l}{x+1>0}\\{x-3>0}\end{array}\right.$,得x>3;
解不等式组$\left\{\begin{array}{l}{x+1<0}\\{x-3<0}\end{array}\right.$,得x<-1,
所以原不等式的解集为x>3或x<-1.
问题解决:根据以上阅读材料,解不等式(2x-3)(1+3x)<0.

查看答案和解析>>

科目: 来源: 题型:解答题

11.如图,已知在△ABC中,AB=AC,D为BC边的中点,过点D作DE⊥AB,DF⊥AC,垂足分别为E、F.
(1)求证:DE=DF;
(2)若∠A=60°,BE=2,求△ABC的周长.

查看答案和解析>>

科目: 来源: 题型:解答题

10.如图,在平行四边形OABC中,∠AOC=60°,OC=4cm,OA=8cm,动点P从点O出发,以1cm/s的速度沿边按O→A→B运动,同时动点Q从点O出发,以1cm/s的速度沿边按O→C→B运动,其中一点到达终点B时,另一点也停止运动,设运动时间为t(s),平行四边形OABC位于直线PQ左侧的图形面积为S(cm2).
(1)平行四边形OABC的面积是16$\sqrt{3}$cm2
(2)当t=6s时,直线PQ平分平行四边形OABC的面积;
(3)求S关于t的函数解析式.

查看答案和解析>>

科目: 来源: 题型:填空题

9.已知,如图,△ABC中,AC=BC,∠C=90°,AE平分∠BAC交BC于E,过E作ED⊥AB于D,连接DC交AE于F,其中BD=1,下列结论:①DC⊥AE;②AB=2+$\sqrt{2}$;③CD•AE=2$\sqrt{2}$+2;④$\frac{AE}{CD}$=2:1,其中正确的结论是①②③.

查看答案和解析>>

科目: 来源: 题型:解答题

8.某数学活动小组在一次活动中,对一个数字问题作如下研究:
【问题发现】如图①,在等边三角形ABC中,点M是BC上任意一点,连接AM,以AM为边作等边△AMN,连接CN,判断CN和AB的位置关系:CN∥AB
【变式探究】如图②,在等腰三角形ABC中,BA=BC,点M是BC边上任意一点(不含端点B,C),连接AM,以AM为边作等腰三角形AMN,使顶角∠AMN=∠ABC,MA=MN,连接CN,试探究∠ABC与∠ACN的数量关系,并说明理由.
【解决问题】如图③,在正方形ADBC中,点M为BC边上一点,以AM为边作正方形AMEF,点N为正方形AMEF的中心,连接CN,若正方形ADBC的边长为8,CN=$\sqrt{2}$,直接写出正方形AMEF的边长.

查看答案和解析>>

科目: 来源: 题型:解答题

7.现有正方形ABCD和一个以O为直角顶点的三角板,移动三角板,使三角板的直角边所在直线分别与直线BC、CD交于点M、N.
(1)如图1,若点O与点A重合,则OM与ON的数量关系是OM=ON;
(2)如图2,若点O在正方形的中心(即两对角线的交点),则(1)中的结论是否仍然成立?请说明理由;
(3)如图3,若点O在正方形的内部(含边界),当OM=ON时,请探究点O在移动过程中可形成什么图形?请说理证明.
(4)如图4是点O在正方形外部的一种情况.当OM=ON时,请你就“点O的位置在各种情况下(含外部)移动所形成的图形”提出一个正确的结论.(不必说理)

查看答案和解析>>

科目: 来源: 题型:解答题

6.如图,在直角坐标系中,点A,B分别在x轴负半轴、y轴正半轴上,
OA=1,OB=$\sqrt{3}$,以AB为边在第二象限作□ABCD,∠DAB=75°.
(1)若BC=$\sqrt{2}$AB,求点D的坐标;
(2)在(1)的情况下,若反比例函数y=$\frac{k}{x}$的图象经过D点,求证:点C不在反比例函数y=$\frac{k}{x}$ 的图象上;
(3)问是否存在m,使得BC=mAB,且C、D两点均在反比例函数y=$\frac{k}{x}$的图象上?若存在,求出m的值;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案