相关习题
 0  303521  303529  303535  303539  303545  303547  303551  303557  303559  303565  303571  303575  303577  303581  303587  303589  303595  303599  303601  303605  303607  303611  303613  303615  303616  303617  303619  303620  303621  303623  303625  303629  303631  303635  303637  303641  303647  303649  303655  303659  303661  303665  303671  303677  303679  303685  303689  303691  303697  303701  303707  303715  366461 

科目: 来源: 题型:填空题

4.已知x=1是关于x的方程x2-2ax+3=0的一个根,则实数a=2.

查看答案和解析>>

科目: 来源: 题型:解答题

3.定义:如图1,点C在线段AB上,若满足AC2=BC•AB,则称点C为线段AB的黄金分割点.如图2,△ABC中,AB=AC=1,∠A=36°,BD平分∠ABC交AC于点D.
(1)求证:点D是线段AC的黄金分割点;
(2)求出线段AD的长.

查看答案和解析>>

科目: 来源: 题型:解答题

2.在不透明的袋子中有四张标着数字1,2,3,4的卡片.
(1)随机地抽取一张,求P(偶数);
(2)随机地抽取两张,两数字之和是偶数的小明获胜、两数字之和为奇数的小华胜,你认为谁获胜的可能性大?为什么?

查看答案和解析>>

科目: 来源: 题型:解答题

1.如图,AB是⊙O的直径,C是弧BD的中点,CE⊥AB,垂足为E,BD交CE于点F.
(1)求证:CF=BF;
(2)若BE=4,EF=3,求⊙O的半径.

查看答案和解析>>

科目: 来源: 题型:解答题

20.如图,抛物线y=$\frac{1}{2}$x2+bx-2与x轴交于A、B两点,与y轴交于C点,且A(-1,0).
(1)求b的值和顶点D的坐标;
(2)判断△ABC的形状,并证明你的结论;
(3)点M(m,0)是x轴上的一个动点,当CM+DM的值最小时,求m的值.

查看答案和解析>>

科目: 来源: 题型:解答题

19.如图,已知二次函数y=ax2+bx+c的图象过A(2,0),B(0,-1)和C(4,5)三点.
(1)求二次函数的解析式;
(2)在同一坐标系中画出直线y=x+1,并写出当x在什么范围内时,一次函数的值不小于二次函数的值.

查看答案和解析>>

科目: 来源: 题型:解答题

18.阅读下列问题:
$\frac{1}{{1+\sqrt{2}}}=\frac{{1×(\sqrt{2}-1)}}{{(\sqrt{2}+1)(\sqrt{2}-1)}}=\sqrt{2}-1$;
$\frac{1}{{\sqrt{3}+\sqrt{2}}}=\frac{{\sqrt{3}-\sqrt{2}}}{{(\sqrt{3}+\sqrt{2})(\sqrt{3}-\sqrt{2})}}=\sqrt{3}-\sqrt{2}$;
$\frac{1}{{\sqrt{5}+2}}=\frac{{\sqrt{5}-2}}{{(\sqrt{5}+2)(\sqrt{5}-2)}}=\sqrt{5}-2$.
(1)求$\frac{1}{\sqrt{n+1}+\sqrt{n}}$(n为整数)的值.
(2)利用上面所揭示的规律计算:
 $\frac{1}{1+\sqrt{2}}$+$\frac{1}{\sqrt{2}+\sqrt{3}}$+$\frac{1}{\sqrt{3}+\sqrt{4}}$+…+$\frac{1}{\sqrt{2010}+\sqrt{2011}}$+$\frac{1}{\sqrt{2011}+\sqrt{2012}}$.

查看答案和解析>>

科目: 来源: 题型:填空题

17.若实数m满足m2-$\sqrt{10}$m+1=0,则(m-$\frac{1}{m}$)2=6.

查看答案和解析>>

科目: 来源: 题型:解答题

16.阅读下面例题的解答过程,体会并其方法,并借鉴例题的解法解方程.
例:解方程x2-|x-1|-1=0.
解:(1)当x-1≥0即x≥1时,|x-1|=x-1.
原化为方程x2-(x-1)-1=0,即x2-x=0
解得x1=0.x2=1
∵x≥1,故x=0舍去,
∴x=1是原方程的解.
(2)当x-1<0即x<1时,|x-1|=-(x-1).
原化为方程x2+(x-1)-1=0,即x2+x-2=0
解得x1=1.x2=-2
∵x<1,故x=1舍去,
∴x=-2是原方程的解.
综上所述,原方程的解为x1=1,x2=-2
解方程x2-|x-2|-4=0.

查看答案和解析>>

科目: 来源: 题型:解答题

15.如图,在直角坐标系中,△ABC满足∠BCA=90°,AC=BC=5$\sqrt{2}$,点A、C分别在x轴和y轴上,当点A从原点开始沿x轴的正方向运动时,则点C始终在y轴上运动,点B始终在第一象限运动.
(1)当AB∥y轴时,B点坐标是(5,10);
(2)随着A、C的运动,当点B落在直线y=3x上时,求此时A点的坐标;
(3)在(2)的条件下,在y轴上是否存在点D,使以O、A、B、D为顶点的四边形面积是40?如果存在,请直接写出点D的坐标;如果不存在,请说明理由.

查看答案和解析>>

同步练习册答案