相关习题
 0  303525  303533  303539  303543  303549  303551  303555  303561  303563  303569  303575  303579  303581  303585  303591  303593  303599  303603  303605  303609  303611  303615  303617  303619  303620  303621  303623  303624  303625  303627  303629  303633  303635  303639  303641  303645  303651  303653  303659  303663  303665  303669  303675  303681  303683  303689  303693  303695  303701  303705  303711  303719  366461 

科目: 来源: 题型:选择题

4.如图,E在矩形ABCD的AD边上,AE=3,ED=5,DC=10,F,H分别在AB,CD上,四边形EFGH是菱形,则△FBG的面积S的取值范围是(  )
A.0<S≤15B.2<S≤12C.1<S≤15D.0<S≤12

查看答案和解析>>

科目: 来源: 题型:解答题

3.老师将作业写在黑板上时,只写了题干,没有写问题,她让学生自己写问题然后进行解答.芳芳写了三个问题,请你解答芳芳的问题.
老师给的题干:
已知O为直线AB上的一点,CD⊥AB于点O,PO⊥EO于点O,OM平分∠COE,F在OE的反向延长线上.
(1)当OP在∠BOC内、OE在∠BOD内时,如图1所示,试判断∠POM和∠COF之间的数量关系,并说明理由;
(2)当OP在∠AOC内、OE在∠BOC内时,如图2所示,试问(1)中∠POM和∠COF之间的数量关系是否发生变化,并说明理由;
(3)当OP在∠AOD内、OE在∠AOC内时,如图3所示,继续探究∠POM和∠COF之间的数量关系,并说明理由.

查看答案和解析>>

科目: 来源: 题型:解答题

2.解下列方程组
(1)$\left\{\begin{array}{l}{x:y=3:2}\\{y:z=5:4}\end{array}\right.$.
(2)$\left\{\begin{array}{l}{x+y=1}\\{y+z=6}\\{z+x=3}\end{array}\right.$.
(3)$\left\{\begin{array}{l}{2x+3y+z=6}\\{x-y+2z=-1}\\{x+2y-z=5}\end{array}\right.$.

查看答案和解析>>

科目: 来源: 题型:解答题

1.解方程组:$\left\{\begin{array}{l}{a+b=8①}\\{4ab=64-4②}\end{array}\right.$.

查看答案和解析>>

科目: 来源: 题型:解答题

20.解方程组:$\left\{\begin{array}{l}{5x-3y=4}\\{2x+4y=-1}\end{array}\right.$.

查看答案和解析>>

科目: 来源: 题型:解答题

19.如图所示,CD,CE是⊙O的两条弦,A,B分别是$\widehat{CD}$和$\widehat{CE}$的中点,连接AB交CD于点F,交CE于点H,求证:CF=CH.

查看答案和解析>>

科目: 来源: 题型:选择题

18.在Rt△ABC中,∠C=90°,AB=4,D为斜边AB上的一个动点,作DE⊥AC于E,DF⊥BC于F,以EF为直径作一个圆,记圆的周长为l,则下面结论中错误的是(  )
A.若∠A=30°,则l的最小值等于$\sqrt{3}$πB.若∠A=45°,则l的最小值等于2π
C.若∠A=60°,则l的最小值等于$\frac{\sqrt{3}}{2}$πD.若EF∥AB,则l等于2π

查看答案和解析>>

科目: 来源: 题型:解答题

17.已知三角形的三边长x、y、z满足(x-z)2=(z-y)(z-x)+(x-z)(2x-z),试判断这个三角形的形状.

查看答案和解析>>

科目: 来源: 题型:填空题

16.已知任意三角形的三条高交于一点,叫做三角形的垂心.如图AB是半圆的直径,图1中,点C在半圆外;图2中,点C在半圆内,请仅用无刻度的直尺按要求画图并简要说明画法(不需证明).
(1)在图1中,画出△ABC的垂心,简要说明画法连结AD,BE,交于点P,连结CP并且延长交AB于点F;
(2)在图2中,画出△ABC中AB边上的高,简要说明画法延长AC、BC分别交半圆于点D,E,连接AD,BE,并延长相交于点P,连接PC并延长交AB于T,则CT就是AB上的高.

查看答案和解析>>

科目: 来源: 题型:解答题

15.如图,边长为4的正方形ABCD中,AE=CF=1,点G、H分别是边AB、CD上的动点,且AG=CH.
(1)判断四边形EGFH的形状,并说明理由;
(2)当AG的长为1或3时,四边形EGFH为矩形;
(3)设四边形EGFH的周长为L,则L的范围是$2\sqrt{5}+2\sqrt{13}≤L≤8\sqrt{2}$.

查看答案和解析>>

同步练习册答案