相关习题
 0  305748  305756  305762  305766  305772  305774  305778  305784  305786  305792  305798  305802  305804  305808  305814  305816  305822  305826  305828  305832  305834  305838  305840  305842  305843  305844  305846  305847  305848  305850  305852  305856  305858  305862  305864  305868  305874  305876  305882  305886  305888  305892  305898  305904  305906  305912  305916  305918  305924  305928  305934  305942  366461 

科目: 来源: 题型:解答题

1.如图,有一张矩形纸片ABCD,AB=4cm,BC=6cm,点E是BC的中点.实施操作:将纸片沿直线AE折叠,使点B落在梯形AECD内,记为点B′.
(1)用尺规在图中作出△AEB′(保留作图痕迹);
(2)求B′、C两点之间的距离.

查看答案和解析>>

科目: 来源: 题型:解答题

20.响应政府“节能”号召,我市华强照明公司减少了白炽灯的生产数量,引进新工艺生产一种新型节能灯.已知这种节能灯的出厂价为每个10元.某商场试销发现:销售单价定为15元/个,每月销售量为350个;每涨价1元,每月少卖10个.
(1)求出每月销售量y(个)与销售单价x(元)之间的函数关系,并写出自变量的取值范围;
(2)设该商场每月销售这种节能灯获得的利润为w(元),当销售单价定为多少元时,每月可获得最大利润?
(3)如果物价部门规定,这种节能灯的销售单价不得高于25元.商场根据公司生产调拨计划得知,每月商场最多可销售这种节能灯300个,在这种情况下,商场每月销售这种节能灯最多可获得多少利润?

查看答案和解析>>

科目: 来源: 题型:解答题

19.如图,已知在平面直角坐标系xOy中,O是坐标原点,双曲线y1=$\frac{m}{x}$与直线y2=-x+b交于A,D两点,直线y2=-x+b交x轴于点C,交y轴于点B,点B的坐标为(0,3),S△AOB=S△DOC=3.
(1)求m和b的值;
(2)求y1>y2时x的取值范围.

查看答案和解析>>

科目: 来源: 题型:解答题

18.矩形ABCO如图放置,点A,C在坐标轴上,点B在第一象限,一次函数y=kx-3的图象过点B,分别交x轴、y轴于点E、D,已知C(0,3)且S△BCD=12.
(1)求一次函数表达式;
(2)若反比例函数$y=\frac{m}{x}$过点B,在其第一象限的图象上有点P,且满足S△CBP=$\frac{2}{3}$S△DOE,求出点P的坐标;
(3)连接AC,若反比例函数$y=\frac{m}{x}$的图象与△ABC的边总有有两个交点,直接写出m的取值范围.

查看答案和解析>>

科目: 来源: 题型:解答题

17.如图,PA为⊙O的切线,A为切点.过A作OP的垂线AB,垂足为点C,交⊙O于点B.延长BO与⊙O交于点D,与PA的延长线交于点E.
(1)求证:PB为⊙O的切线;
(2)试探究线段AD、AB、CP之间的等量关系,并加以证明;
(3)若OC=3,$\frac{AD}{AB}$=$\frac{1}{2}$,sinE=$\frac{3}{5}$.

查看答案和解析>>

科目: 来源: 题型:解答题

16.已知:△ABC内接于⊙O,过点B作直线EF,AB为非直径的弦,且EF是⊙O的切线
(1)求证:∠CBF=∠A;
(2)若∠A=30°,BC=2,连接OC并延长交EF于点M,求由弧BC、线段BM和CM所围成的图形的面积.

查看答案和解析>>

科目: 来源: 题型:解答题

15.如图,直线y=-$\frac{1}{2}$x-1与x轴、y轴分别交于点A、B,与反比例函数y=$\frac{k}{x}$(x<0)的图象交于点C,过点A作AD⊥0A,交反比例函数的图象于点D,连结CD.
(1)若已知AB=AC,求反比例函数的表达式;
(2)若已知CD=AC,求△ACD的面积.

查看答案和解析>>

科目: 来源: 题型:解答题

14.如图,将矩形纸片ABCD沿对角线AC折叠,使点B落到点F的位置,AF与CD交于点E 
(1)找出一个与△AED全等的三角形,并加以证明;
(2)已知AD=4,CD=8,求△AEC的面积.

查看答案和解析>>

科目: 来源: 题型:解答题

13.如图,一艘货船以每小时48海里的速度从港口B出发,沿正北方向航行.在港口B处时,测得灯塔A处在B处的北偏西37°方向上,航行至C处,测得A处在C处的北偏西53°方向上,且A、C之间的距离是45海里.在货船航行的过程中,求货船与灯塔A之间的最短距离及B、C之间的距离;若货船从港口B出发2小时后到达D,求A、D之间的距离.
(参考数据:sin53°≈$\frac{4}{5}$,cos53°≈$\frac{3}{5}$,tan53°≈$\frac{4}{3}$)

查看答案和解析>>

科目: 来源: 题型:解答题

12.(1)计算:(-1)2014+(sin30°)-1+($\frac{3}{5-\sqrt{2}}$)0-|3-$\sqrt{18}$|+83×(-0.125)3
(2)先化简,再求值:$\frac{{x}^{2}+2x+1}{2x-6}$÷(x-$\frac{1-3x}{x-3}$),其中x为数据0,-1,-3,1,2的极差.

查看答案和解析>>

同步练习册答案