相关习题
 0  305887  305895  305901  305905  305911  305913  305917  305923  305925  305931  305937  305941  305943  305947  305953  305955  305961  305965  305967  305971  305973  305977  305979  305981  305982  305983  305985  305986  305987  305989  305991  305995  305997  306001  306003  306007  306013  306015  306021  306025  306027  306031  306037  306043  306045  306051  306055  306057  306063  306067  306073  306081  366461 

科目: 来源: 题型:解答题

13.如图,足球上守门员在O处开出一高球.球从离地面1米的A处飞出(A在y轴上),把球看成点.其运行的高度y(单位:m)与运行的水平距离x(单位:m)满足关系式y=a(x-6)2+h.
(1)①当此球开出后.飞行的最高点距离地面4米时.求y与x满足的关系式.
②在①的情况下,足球落地点C距守门员多少米?(取4$\sqrt{3}$≈7)
③如图所示,若在①的情况下,求落地后又一次弹起.据实验测算,足球在草坪上弹起后的抛物线与原来的抛物线形状相同,最大高度减少到原来最大高度的一半.求:站在距离O点6米的B处的球员甲要抢到第二个落点D处的球.他应再向前跑多少米?(取2$\sqrt{6}$≈5)
(2)球员乙身高为1.75米.在距O点11米的H处.试图原地跃起用头拦截.守门员调整开球高度.若保证足球下落至H正上方时低于球员乙的身高.同时落地点在距O点15米之内.求h的取值范围.

查看答案和解析>>

科目: 来源: 题型:解答题

12.已知二次函数y=ax2+bx+2,它的图象经过点(1,2).
(1)若该图象与x轴的一个交点为(-1,0).
①求二次函数y=ax2+bx+2的表达式;
②出该二次函数的大致图象,并借助函数图象,求不等式ax2+bx+2≥0的解集;
(2)当a取a1,a2时,二次函数图象与x轴正半轴分别交于点M(m,0),点N(n,0).如果点N在点M的右边,且点M和点N都在点(1,0)的右边.试比较a1和a2的大小.

查看答案和解析>>

科目: 来源: 题型:解答题

11.华盛公司有甲、乙两个销售团队,同时销售同种产品,12个月后统计得出如下信息:甲销售团队第x个月销售量y1(万件)与x之间的函数关系为y1=a(x-4)2+$\frac{1}{8}$;乙销售团队第x个月销售量y2(万件)与x之间的函数关系为y2=kx+1(1≤x≤12,x为整数).甲、乙两个销售团队在第1个月的销售量相同,均为$\frac{5}{4}$(万件)
(1)分别求y1、y2的函数解析式;
(2)探求有几个月乙销售团队比甲销售团队的销量高,并求当月最多高出多少万件?
(3)直接写出共有多少个月甲、乙两个销售团队的销售量均不低于$\frac{17}{8}$万件.

查看答案和解析>>

科目: 来源: 题型:选择题

10.生物学家发现一种病毒的长度约为0.0000037毫米,数据0.0000037用科学记数法表示的结果为(  )
A.3.7×10-5B.37×10-5C.3.7×10-6D.0.37×10-5

查看答案和解析>>

科目: 来源: 题型:解答题

9.柴静自费力作《穹顶之下》关于雾霾的深度调查中,提到2014雾霾天超过200天的城市,让人难以想象的是杭州竟然位列其中.据调查造成杭州雾霾严重的主要原因是汽车尾气的排放,它占到PM2.5来源的40%,下面是近几年杭州汽车保有量的统计图,请指出:
(1)哪一年汽车增长的速度最快.
(2)请计算2013年汽车的年增长率,2014年杭州限牌后增长速度有所缓解,如果没有限牌,继续按着03年的增长率继续增长(以后每年的增长率相同)预计2014年汽车保有量达到多少,2016年呢?(精确到个位)
(3)请对改善杭州的环境提出一个有效的建议.

查看答案和解析>>

科目: 来源: 题型:填空题

8.如图,在等边△ABC中,点D为AB边中点,点E在CB的延长线上,点F在AC的延长线上,DF交BC于点G且∠EDF=120°.若CE=8,CF=2,则CG=1.

查看答案和解析>>

科目: 来源: 题型:解答题

7.据统计资料,甲、乙两种作物的单位面积产值的比是1:2,现要把一块长AB为200m、宽AD为100m的长方形土地,分为两块土地,分别种植这两种作物,使甲、乙两种作物的总产量的比是3:4.
(1)如图1,若甲、乙两种作物的种植区分别为长方形ABFE和EFCD,此时设AE=xm,ED=ym,列方程组去x,y的值并写出种植甲、乙两种作物的面积;
(2)若按如图2划分出一块三角形土地AEF种植一块作物,其余土地种植另一种作物,三角形土地AEF适合种哪种作物?为什么?AF应该取多长?
(3)若按如图3划分出一块正方形土地AEGF种植一种作物,其余土地种植另一种作物,正方形AEGF适合种哪种作物?AF应该取多长?(结果用根号表示)
(4)若按如图4划分出一块圆形土地种植一种作物,其余土地种植另一种作物,圆形土地是否适合种植其中某种作物,若适合,请说明适合种植哪种作物,并确定圆的半径,若不适合,请说明理由(π取3.142)

查看答案和解析>>

科目: 来源: 题型:选择题

6.如图,在直角△OAB中,∠AOB=30°,OA=2,将△OAB绕点O逆时针旋转n°得到△OA′B′,则∠A′OB、OA′大小分别为(  )
A.n°,1B.n°,2C.n°-30°,1D.n°-30°,2

查看答案和解析>>

科目: 来源: 题型:解答题

5.【问题提出】
我们知道对于任何一个封闭的平面图形.是否存在既平分周长,又平分面积的直线.
【问题探究】
(1)请在图1的三个图形中,分别做一条直线,使这条直线既平分周长,又平分面积.

(2)如图2,在Rt△ABC中,∠A=90°,AB=3,AC=4,是否存在过AB上的点M的直线,使它既平分△ABC的周长,又平分△ABC的面积?若存在,求出AM的长;若不存在,请说明理由.
【问题解决】
(3)如图3,四边形ABCD是某市将要筹建的高新技术开发区用地示意图,其中AB=AD=9,BC=5,CD=13,∠A=90°.为了方便驻区单位,准备修一条笔直的道路(路宽不计),使这条路所在的直线既平分四边形ABCD的周长,又平分四边形ABCD的面积.并且要求路的一个出口在DC边上,你认为这样的路是否存在?若存在,请求出路的另一个出口与点A的距离;若不存在,请说明理由.

查看答案和解析>>

科目: 来源: 题型:解答题

4.如图,用若干条长度都是a的线段,顺次连成一个折线图折线每个角的夹角是90°,即:A1A2=A2A3=A3A4=A4A5=A5A6=A6A7A7A8=A8A9=A9A10=A10A11=A11A12=a,且满足:∠A1A2A3=∠A2A3A4=∠A3A4A5=∠A4A5A6=…=∠A9A10A11=∠A10A11A12=90°.

(1)如果线段A1A2称为下行线段,线段A2A3称为右行线段,线段A3A4称为上行线段,请直接写出A13A14、A16A17是何种线段.
(2)连接A1A3、A4A7和A5A11
①用量角器测量∠A1A3A2、∠A4A7A6和∠A5A11A10的大小(精确到1°).
②计算∠A1A3A2+∠A4A7A6+∠A5A11A10的大小;
(3)连接A1A2013、A4A2013、A5A2013和A8A2013
①直接写出线段A1A2013、A4A2013、A5A2013和A8A2013的长度;
②由①归纳A1A4n+1、A4A4n+1的长度.

查看答案和解析>>

同步练习册答案