1.下列等式:
$\frac{1}{1×2}$=1-$\frac{1}{2}$,$\frac{1}{2×3}$=$\frac{1}{2}$-$\frac{1}{3}$,$\frac{1}{3×4}$=$\frac{1}{3}$-$\frac{1}{4}$
将以上三个等式两边分别相加得
$\frac{1}{1×2}$+$\frac{1}{2×3}$+$\frac{1}{3×4}$=1-$\frac{1}{2}$+$\frac{1}{2}$-$\frac{1}{3}$+$\frac{1}{3}$-$\frac{1}{4}$=1-$\frac{1}{4}$=$\frac{3}{4}$
(1)猜想:$\frac{1}{n(n+1)}$=$\frac{1}{n}$-$\frac{1}{n+1}$;
(2)直接写出下列各式的结果
①$\frac{1}{1×2}$+$\frac{1}{2×3}$+…+$\frac{1}{2013×2014}$=$\frac{2013}{2014}$;
②$\frac{1}{100×101}$+$\frac{1}{101×102}$+…+$\frac{1}{n(n+1)}$=$\frac{n-99}{100(n+1)}$.
(3)探究并计算:$\frac{1}{2×4}$+$\frac{1}{4×6}$+$\frac{1}{6×8}$+…+$\frac{1}{2012×2014}$.