相关习题
 0  307516  307524  307530  307534  307540  307542  307546  307552  307554  307560  307566  307570  307572  307576  307582  307584  307590  307594  307596  307600  307602  307606  307608  307610  307611  307612  307614  307615  307616  307618  307620  307624  307626  307630  307632  307636  307642  307644  307650  307654  307656  307660  307666  307672  307674  307680  307684  307686  307692  307696  307702  307710  366461 

科目: 来源: 题型:填空题

19.方程3x+8=17的解x=3.

查看答案和解析>>

科目: 来源: 题型:选择题

18.下面说法正确的是(  )
A.任何一个有理数的绝对值都是正数B.任何数的偶次幂都是正数
C.互为相反数的两数绝对值相等D.-a一定是负数

查看答案和解析>>

科目: 来源: 题型:解答题

17.计算或化简:
(1)30-2-3+(-3)2-($\frac{1}{4}$)-1         
(2)(-2a2b34+(-a)8•(2b43
(3)(-$\frac{1}{2}$x+2y)(-$\frac{1}{2}$x-2y)         
(4)(2a+1)-(1-2a)2
(5)(3x-y)2-(2x+y)+5x(y-x)    
(6)(x+5)2-(x-5)2-(2x+1)(-2x-1)
(7)(a+1)(a-1)(a2+1)(a4+1)(a8+1)
(8)(-2a-b+3)(-2a+b+3)

查看答案和解析>>

科目: 来源: 题型:解答题

16.类比、转化、从特殊到一般等思想方法,在数学学习和研究中经常用到,如下是一个案例,请补充完整.
原题:如图1,在?ABCD中,点E是BC边上的中点,点F是线段AE上一点,BF的延长线交射线CD于点G,若$\frac{AF}{EF}$=3,求$\frac{CD}{CG}$的值.
(1)尝试探究
在图1中,过点E作EH∥AB交BG于点H,则AB和EH的数量关系是AB=3EH,CG和EH的数量关系是CG=2EH,$\frac{CD}{CG}$的值是$\frac{3}{2}$
(2)类比延伸
如图2,在原题的条件下,若$\frac{AF}{EF}$=m(m≠0),则$\frac{CD}{CG}$的值是$\frac{m}{2}$(用含m的代数式表示),试写出解答过程.
(3)拓展迁移
如图3,梯形ABCD中,DC∥AB,点E是BC延长线上一点,AE和BD相交于点F,若$\frac{AB}{CD}$=a,$\frac{BC}{BE}$=b(a>0,b>0),则$\frac{AF}{EF}$的值是ab(用含a,b的代数式表示).

查看答案和解析>>

科目: 来源: 题型:解答题

15.如图所示,△ABC中,AB=AC,点D在△ABC的外部,且∠ABD是锐角,点E在射线AC的左侧,且∠ACE与∠ABD互补,BD=CE,DE与BC相交于点F.
求证:DF=FE.

查看答案和解析>>

科目: 来源: 题型:解答题

14.甲、乙两班的学生于上午8:00出发,到距离学校27千米的一个动物园参观,现有一辆汽车,每次只能坐一个班的学生,为了能使两班同时到达,合理安排步行和乘车,若步行的速度为每小时4千米,汽车的速度为每小时60千米,那么两个班最早几时几分同时到?

查看答案和解析>>

科目: 来源: 题型:解答题

13.朝宗实验学校初三年级的同学参加了吉州市的模拟统考,该校数学教师对本班数学成绩(成绩取整数,满分为120分)作了统计分析,绘制成频数分布表和频数分布直方图,请你根据图表提供的信息,解答下列问题.
频数频率
60<x≤7220.04
72<x≤8480.16
84<x≤9620a
96<x≤108160.32
108<x≤120b0.08
合计501
(1)频数分布表中a=0.4,b=4;
(2)补全频数分布直方图;
(3)为了激励学生,教师准备从超过108分的学生中选2人介绍学习经验,那么取得118分的小红和112分的小明同时被选上的概率是多少?请用列表法或画树形图加以说明,并列出所有可能的结果.

查看答案和解析>>

科目: 来源: 题型:填空题

12.一个立体图形的三视图如图所示,根据图中数据求得这个立体图形的侧面积为15π.

查看答案和解析>>

科目: 来源: 题型:解答题

11.善于学习的小敏查资料知道:对应角相等,对应边成比例的两个梯形,叫做相似梯形.他想到“平行于三角形一边的直线和其他两边相交,所构成的三角形与原三角形相似”,提出如下两个问题,你能帮助解决吗?
【问题一】平行于梯形底边的直线截两腰所得的小梯形和原梯形是否相似?
(1)从特殊情形入手探究.假设梯形ABCD中,AD∥BC,AB=6,BC=8,CD=4,AD=2,MN是中位线(如图①).根据相似梯形的定义,请你说明梯形AMND与梯形ABCD是否相似?
(2)一般结论:平行于梯形底边的直线截两腰所得的梯形与原梯形不相似(填“相似”或“不相似”或“相似性无法确定”,不要求证明)
【问题二】平行于梯形底边的直线截两腰所得的两个小梯形和原梯形是否相似?
(1)从特殊平行线入手探究,梯形的中位线截两腰所得的两个小梯形不相似(填“相似”或“不相似”或“相似性无法确定”,不要求证明)
(2)从特殊梯形入手探究.同上假设,梯形ABCD中,AD∥BC,AB=6,BC=8,CD=4,AD=2,你能找到与梯形底边平行的直线PQ(点PQ在梯形的两腰上,如图②),使得梯形APQD与梯形PBCQ相似吗?请根据相似梯形的定义说明理由.
(3)一般结论:对于任意梯形(如图③),一定存在(填“存在”或“不存在”)平行于梯形底边的直线PQ,使截得的两个小梯形相似?若存在,则确定这条平行线位置的条件是$\frac{AP}{PB}$=$\frac{\sqrt{ab}}{b}$(设AD=a,BC=b,AB=c,CD=d.用含a、b的式子表示 ).

查看答案和解析>>

科目: 来源: 题型:解答题

10.如图,在平行四边形ABCD中,P是AD上的一点,且BP和CP分别平分∠ABC和∠BCD.
(1)求∠BPC的度数;
(2)如果AB=5cm,BP=8cm,求三角形BPC的面积.

查看答案和解析>>

同步练习册答案