相关习题
 0  308521  308529  308535  308539  308545  308547  308551  308557  308559  308565  308571  308575  308577  308581  308587  308589  308595  308599  308601  308605  308607  308611  308613  308615  308616  308617  308619  308620  308621  308623  308625  308629  308631  308635  308637  308641  308647  308649  308655  308659  308661  308665  308671  308677  308679  308685  308689  308691  308697  308701  308707  308715  366461 

科目: 来源: 题型:解答题

16.如图所示,I为△ABC的内心,M为BC的中点,四边形IQDM为平行四边形,求证:∠QMD=90°.

查看答案和解析>>

科目: 来源: 题型:解答题

15.如图梯形ABCD中,AD∥BC,O为对角线的交点,F为OB上一点,E为CF上一点,S△AOB=10,S△BFE=3,S△BEC=9,S△OEC=6,试求梯形ABCD的面积.

查看答案和解析>>

科目: 来源: 题型:解答题

14.已知抛物线y=ax2+x+c(a≠0)经过A(-1,0),B(2,0)两点,与y轴相交于点C. 
(1)求该抛物线的解析式;
(2)点E是该抛物线上一动点,且位于第一象限,当点E到直线BC的距离最大时,求点E的坐标;
(3)在(2)的条件下,在x轴上有一点P,且∠EAO+∠EPO=∠α,当tanα=2时,求点P的坐标.

查看答案和解析>>

科目: 来源: 题型:解答题

13.如图,抛物线y=ax2+bx+c过原点,且与直线y=mx+n交于A(8,0)、B(4,-3)两点,直线AB与y轴相交于点P,点M为线段OA上一动点,∠PMN为直角,边MN与AP相交于点N,设OM=t.
(1)求抛物线和直线的解析式;
(2)当t为何值时,△MAN为等腰三角形;
(3)当t为何值时,以线段PN为直径的圆与x轴相切?并求此时圆的直径PN的长.

查看答案和解析>>

科目: 来源: 题型:解答题

12.已知二次函数的图象经过A(2,0)、C(0,12)两点,且对称轴为直线x=4.设顶点为点P,与x轴的另一交点为点B.
(1)求二次函数的解析式及顶点P的坐标;
(2)如图,在直线y=2x上是否存在点D,使四边形OPBD为等腰梯形?若存在,求出点D的坐标;若不存在,请说明理由.

查看答案和解析>>

科目: 来源: 题型:解答题

11.我们把一个半圆与抛物线的一部分合成的封闭图形称为“蛋圆”.如图1,点A、B、C、D分别是“蛋圆”与坐标轴的交点,已知点D的坐标为(0,-3),AB为半圆的直径,半圆圆心M的坐标为(1,0),半圆半径为2.
(1)请你求出“蛋圆”抛物线部分的解析式,并写出自变量的取值范围;
(2)将图中“蛋圆”整体向上平移,并使得抛物线的顶点与点(1,-2)重合,从而形成一个“阿拉伯人”的卡通形象,求这个“阿拉伯人”络缌部分(图2中阴影部分)的面积.

查看答案和解析>>

科目: 来源: 题型:解答题

10.如图1,已知抛物线y=$\frac{1}{2}$x2+bx+c与x轴交于点A(-4,0)和B(1,0),与y轴交于C点.

(1)求此抛物线的解析式;
(2)若P为抛物线上A、C两点间的一个动点,过P作y轴的平行线,交AC于Q,当P点运动到什么位置时,线段PQ的长最大,并求此时P点的坐标;
(3)设E是线段AB上的动点,作EF∥AC交BC于F,连接CE,当△CEF的面积是△BEF面积的2倍时,求E点的坐标.

查看答案和解析>>

科目: 来源: 题型:解答题

9.如图,在直角坐标系中,直线y=-x+k经过抛物线y=ax2+bx+c的顶点A(-1,5)和另一点B(8,-4).
(1)求抛物线的解析式和k的值;
(2)动点P是直线AB上方抛物线上一点(不与A,B重合),过点P作PD⊥AB于D,作PC⊥x轴于C,交直线AB与E.
①设△PDE的周长为L,点P的横坐标为x,求L与x之间的函数关系式;
②问是否存在一点P,使得以E为圆心,PD为半径的圆与两坐标轴相切?若存在请求出P点坐标;若不存在,请说明理由.

查看答案和解析>>

科目: 来源: 题型:填空题

8.如图,在正方形ABCD中,AB=4,将△ADC绕点A顺时针旋转α(0<α<45°),记旋转后的三角形为△AD′C′,过点B作BE⊥AC′于点E,延长BE交射线AD′于点F,连接DF,取AB中点H,连接HE,在旋转过程中,当HE⊥BD时,(BE+DF)2的值为8+4$\sqrt{2}$.

查看答案和解析>>

科目: 来源: 题型:解答题

7.如图,已知点A的坐标是(-1,0),点B的坐标是(9,0),以AB为直径作⊙O′,交y轴的负半轴于点C,连接AC、BC,过A、B、C三点作抛物线.
(1)求抛物线的解析式;
(2)点E是AC延长线上一点,∠BCE的平分线CD交⊙O′于点D,连结BD,求直线BD的解析式;
(3)在(2)的条件下,抛物线上是否存在点P,使得∠PDB=∠CBD?如果存在,请求出点P的坐标;如果不存在,请说明理由.

查看答案和解析>>

同步练习册答案