相关习题
 0  308562  308570  308576  308580  308586  308588  308592  308598  308600  308606  308612  308616  308618  308622  308628  308630  308636  308640  308642  308646  308648  308652  308654  308656  308657  308658  308660  308661  308662  308664  308666  308670  308672  308676  308678  308682  308688  308690  308696  308700  308702  308706  308712  308718  308720  308726  308730  308732  308738  308742  308748  308756  366461 

科目: 来源: 题型:解答题

8.如图,已知在直角梯形ABCD中,AD∥BC,AB⊥BC,AD=11,BC=13,AB=12.动点P、Q分别在边AD和BC上,且BQ=3DP.线段PQ与BD相交于点E,过点E作EF∥BC,交CD于点F,射线PF交BC的延长线于点G,设DP=x.
(1)求$\frac{EF}{QG}$的值.
(2)当点P运动时,试探究四边形EFGQ的面积是否会发生变化?如果发生变化,请用x的代数式表示四边形EFGQ的面积S;如果不发生变化,请求出这个四边形的面积S.
(3)当△PQG是以线段PQ为腰的等腰三角形时,求x的值.

查看答案和解析>>

科目: 来源: 题型:选择题

7.如图.矩形OAPB的顶点P在反比例函数y=$\frac{k}{x}$(k>0,x>0)的图象上,点E、F分别是矩形的边PA,PB上的动点,直线EF分别交y轴、x轴于C,D两点.现给出如下命题:①若点E、F恰同在反比例函数y=$\frac{m}{x}$(k>m>0)的图象上,则S四边形OEPF=k-m;②△ACE≌△BFD;③若OC=OD=$\sqrt{2k}$,则△OCF∽△EOF;④CE+DF=EF.其中结论正确的是(  )
A.①②③B.①②④C.①③④D.①②③④

查看答案和解析>>

科目: 来源: 题型:解答题

6.已知,直线m:y=kx+b与直线n:y=2x平行,且过点(1,1)
(1)求直线m的表达式;
(2)求出直线m与两坐标轴的交点坐标;
(3)求直线m与直线y=-3x-1以及x轴围成的三角形面积.

查看答案和解析>>

科目: 来源: 题型:解答题

5.【问题情境】王老师给爱钻研的小明和小亮提出这样一个问题:
如图①所示,在△ABC中,AB=AC,点P为边BC上的任一点,过点P作PD⊥AB,PE⊥AC,垂足分别为D、E,过点C作CF⊥AB,垂足为F,求证:PD+PE=CF.
小明的证明思路是:
如图②所示,连接AP,由△ABP与△ACP面积之和等于△ABC的面积可以证得:PD+PE=CF.
小亮的证明思路是:
如图②所示,过点P作PG⊥CF,垂足为G,可以证得:PD=GF,PE=CG,则PD+PE=CF.

【变式探究】如图③所示,当点P在BC的延长线上时,其余条件不变,求证:PD-PE=CF;
请运用上述解答中所积累的经验和方法完成下列两题:
【结论运用】
如图④所示,将矩形ABCD沿EF折叠,使点D落在点B上,点C落在点C′处,点P为折痕EF上的任一点,过点P作PG⊥BE、PH⊥BC,垂足分别为G、H,若D=8,CF=3,求PG+PH的值;
【迁移拓展】
如图⑤所示是一个航模的截面示意图,在四边形ABCD中,E为AB边长的一点,ED⊥AD,EC⊥CB,垂足分别为D、C,且AD•CE=DE•BC,AB=2$\sqrt{13}$dm,AD=3dm,BD=$\sqrt{37}$dm.M、N分别为AE、BE的中点,连接DM、CN,求△DEM与△CEN的周长之和.

查看答案和解析>>

科目: 来源: 题型:解答题

4.如图,在等边三角形ABC中,BC=180,E,F分别是AB,AC的中点,点P从点B出发,沿折线段BE-EF以每秒6个单位长的速度向点F匀速运动,点Q从点C出发沿线段CB方向以每秒3个单位长的速度向点B匀速运动,点P,Q同时出发,当点P与点F重合时点P停止运动,点Q也随之停止,设点P的运动时间为t秒.
(1)当点P在线段BE上(除点B外)运动时,过点P作PN∥BC交FC于点N,作PM⊥BC,垂足为M,连接NQ,所得四边形PMQN是平行四边形吗?请证明你的结论.
你的结论:四边形PMQN是平行四边形;
证明:
(2)当点P在线段EF上运动时,是否存在PQ=FC?若存在,请求出t的值,若不存在,请说明理由.

查看答案和解析>>

科目: 来源: 题型:解答题

3.对点(x,y)的一次操作变换记为P1(x,y),定义其变换法则如下:
P1(x,y)=(x+y,x-y);且规定Pn(x,y)=P1[Pn-1(x,y)](n为大于1的整数).
如P1(1,2)=(3,-1),P2(1,2)=P1[P1(1,2)]=P1(3,-1)=(2,4),P3(1,2)=P1[P2(1,2)]=P1(2,4)=(6,-2).
(1)P1(1,-1)=(0,2)
P2(1,-1)=P1[P1(1,-1)]=P1(0,2)=(2,-2)
P3(1,-1)=P1[P2(1,-1)]=P1(2,-2)=(0,4)
P4(1,-1)=P1[P3(1,-1)]=P1(0,4)=(4,-4)
(2)根据(1)的规律求P5(1,-1),P6(1,-1),P2013(1,-1).

查看答案和解析>>

科目: 来源: 题型:解答题

2.在等腰直角三角形ABC中,∠BAC=90°,AB=AC,直线MN过点A且MN∥BC,过点B为一锐角顶点作Rt△BDE,∠BDE=90°,且点D在直线MN上(不与点A重合),如图1,DE与AC交于点P.

(1)求证:BD=DP;
(2)在图2中,DE与CA延长线交于点P,BD=DP是否成立?如果成立,请给予证明;如果不成立,请说明理由;
(3)在图3中,DE与AC延长线交于点P,BD=DP是否成立?如果成立,请给予证明;如果不成立,请说明理由.

查看答案和解析>>

科目: 来源: 题型:解答题

1.在平面直角坐标系中,O为坐标原点,点A坐标为(1,0),以OA为边在第一象限内作等边△OAB,C为x轴正半轴上的一个动点(OC>1),连接BC,以BC为边在第一象限内作等边△BCD,直线DA交y轴于E点.
(1)如图,当C点在x轴上运动时,设AC=x,请用x表示线段AD的长;
(2)随着C点的变化,直线AE的位置变化吗?若变化,请说明理由;若不变,请求出直线AE的解析式.
(3)以线段BC为直径作圆,圆心为点F,
①当C点运动到何处时直线EF∥直线BO?此时⊙F和直线BO的位置关系如何?请说明理由.
②G为CD与⊙F的交点,H为直线DF上的一个动点,连结HG、HC,求HG+HC的最小值,并将此最小值用x表示.

查看答案和解析>>

科目: 来源: 题型:解答题

20.若将正整数1、2、3、…98写在一起,则可以构成一个新的数字12345…91011…9798.
(1)这个新数是一个几位数?
(2)这个新数各个位上的数字之间和为多少?
(3)在黑板上写上数1、2、3、…98,每次擦去任意两个数,换上这两个数的和或差,重复这样的操作连续若干次,直到黑板上仅留下一个数为止.这个数是否可能为2004?请说明理由.

查看答案和解析>>

科目: 来源: 题型:选择题

19.如图,将△ABC绕点C顺时针方向旋转40°,得△A′B′C,若AC⊥A′B′,则∠A等于(  )
A.50°B.60°C.70°D.80°

查看答案和解析>>

同步练习册答案