8.观察下列各式:
$\frac{1}{2}×\frac{2}{3}=\frac{1}{3}$,$\frac{1}{2}×\frac{2}{3}×\frac{3}{4}=\frac{1}{4}$,$\frac{1}{2}×\frac{2}{3}×\frac{3}{4}×\frac{4}{5}=\frac{1}{5}$,…
(1)猜想:$\frac{1}{2}×\frac{2}{3}×\frac{3}{4}…×\frac{n}{n+1}$=$\frac{1}{n+1}$;
(2)根据上面的规律,解答下列问题:
①计算:($\frac{1}{100}-1$)×($\frac{1}{99}-1$)×($\frac{1}{98}-1$)×…×($\frac{1}{4}-1$)×($\frac{1}{3}-1$)×($\frac{1}{2}-1$)=$\frac{1}{100}$;
②将2012减去它的$\frac{1}{2}$,再减去余下的$\frac{1}{3}$,再减去余下的$\frac{1}{4}$,再减去余下的$\frac{1}{5}$,依此类推,知道最后减去余下的$\frac{1}{2012}$,最后的结果是多少?