相关习题
 0  308681  308689  308695  308699  308705  308707  308711  308717  308719  308725  308731  308735  308737  308741  308747  308749  308755  308759  308761  308765  308767  308771  308773  308775  308776  308777  308779  308780  308781  308783  308785  308789  308791  308795  308797  308801  308807  308809  308815  308819  308821  308825  308831  308837  308839  308845  308849  308851  308857  308861  308867  308875  366461 

科目: 来源: 题型:解答题

14.探究问题:
(1)方法感悟:
如图①,在正方形ABCD中,点E,F分别为DC,BC边上的点,且满足∠EAF=45°,连接EF,求证DE+BF=EF.
感悟解题方法,并完成下列填空:
证明:延长CB到G,使BG=DE,连接AG,
∵四边形ABCD为正方形,
∴AB=AD,∠ABC=∠D=90°,
∴∠ABG=∠D=90°,
∴△ADE≌△ABG.
∴AG=AE,∠1=∠2;
∵四边形ABCD为正方形,
∴∠BAD=90°,
∵∠EAF=45°,
∴∠2+∠3=∠BAD-∠EAF=90°-45°=45°.
∵∠1=∠2,
∴∠1+∠3=45°.
即GAF=∠FAE.
又AG=AE,AF=AF,
∴△GAF≌△EAF.
∴FG=EF,
∵FG=FB+BG,
又BG=DE,
∴DE+BF=EF.
变化:在图①中,过点A作AM⊥EF于点M,请直接写出AM和AB的数量关系AM=AB;
(2)方法迁移:

如图②,将Rt△ABC沿斜边AC翻折得到Rt△ADC,E,F分别是BC,CD边上的点,∠EAF=$\frac{1}{2}$∠BAD,连接EF,过点A作AM⊥EF于点M,试猜想DF,BE,EF之间有何数量关系,并证明你的猜想.试猜想AM与AB之间的数量关系,并证明你的猜想.
(3)问题拓展:
如图③,在四边形ABCD中,AB=AD,E,F分别为DC,BC上的点,满足∠EAF=$\frac{1}{2}$∠DAB,试猜想当∠B与∠D满足什么关系时,可使得DE+BF=EF.请直接写出你的猜想(不必说明理由).猜想:∠B与∠D满足关系:∠B+∠D=180°.

查看答案和解析>>

科目: 来源: 题型:解答题

13.如图,四边形ABCD中,AB=DC,AB∥DC,延长AD到E,延长CB到F,使DE=BF,猜想BE与DF的关系,并证明你的结论.

查看答案和解析>>

科目: 来源: 题型:解答题

12.如图,在△ABD和△ACE中,AB=AC,有下列三个等式:
①AD=AE;②BD=CE;③∠1=∠2
请你以其中两个等式作为题设,余下的一个作为结论,写出一个命题,如果你写的命题是真命题,请证明:若果你写的命题是假命题,请举出一个反例.
已知:如图,在△ABD和△ACE中,AB=AC,AD=AE,BD=CE.求证∠1=∠2.

查看答案和解析>>

科目: 来源: 题型:解答题

11.如图,已知抛物线y=ax2+c经过A(0,-1)和B(2,0),在x轴下方有一直线l,它的解析式是y=-2(即l上每点的纵坐标都是-2).
(1)求抛物线的解析式;
(2)C是抛物线上任意一点,试探求以C为圆心、OC为半径的圆与直线l的位置关系;
(3)设P是抛物线上一点,以OP为边作等边三角形OPQ,Q点恰好落在直线l上,试求出所有满足条件的P点坐标.

查看答案和解析>>

科目: 来源: 题型:解答题

10.已知:如图,正方形ABCD中,AC、BD交于点O,过点O作OE⊥CD于点E,且BC=4cm.点P从点B出发,沿折线BO-OE-ED运动,到点D停止.点P在BO上以$\sqrt{2}$cm/s的速度运动,在折线OE-ED上以1cm/s的速度运动.当点P与点B不重合,过点P作PQ⊥BC于点Q,以PQ为边在PQ左侧作矩形PQMN,使MQ=$\frac{3}{2}$PQ,设点P的运动时间为t(s)
(1)点P从点B运动到点O所需的时间为2(s);
当点P在线段OE上运动时,线段OP的长为t-2(用含t的代数式表示);
(2)当点N落在AB边上时,则t的值为3或$\frac{14}{3}$;
(3)设矩形PQMN与△BOC重叠部分的面积为S(cm2),请直接写出S与t的函数关系式和相应的自变量t的取值范围;
(4)在点P、O重合之前的整个运动过程中,作矩形PQMN关于直线PQ的轴对称图形PQM′N′,取CO中点K,是否存在某一时刻,使△PN′K为等腰三角形?若存在,请求出t的值;若不存在,请说明理由.

查看答案和解析>>

科目: 来源: 题型:解答题

9.定义:如图1,过△ABC的三个顶点分别作与水平线垂直的三条直线,外侧两直线之间的距离OA叫做△ABC的“水平宽”,中间直线处于△ABC内部的线段BD的长度叫做△ABC的“铅垂高”.
性质:三角形的面积等于水平宽与铅垂高乘积的一半.
理解:例如:如图1,OA=3,BD=1.6,则S△ABC=$\frac{1}{2}$×3×1.6=2.4
应用:(1)如图2,在平面直角坐标系中,已知点A(4,0),B(3,4),D(3,1).则△ABC的面积为6;
(2)如图3,在平面直角坐标系中,抛物线y=-x2+bx+c过A(4,0),C(0,4)两点,点M在第一象限的抛物线上运动,在点M的运动过程中,求△AMC面积的最大值;
(3)在(2)的条件下,如图4,点P在抛物线上,
①求以AC为底边的等腰三角形PAC的顶点P的坐标;
②直接写出以AC为底边的等腰三角形PAC的面积.

查看答案和解析>>

科目: 来源: 题型:解答题

8.如图,△ABC是边长为6的等边三角形,AD⊥BC于点D,点M是AB边上的点,且BM=$\frac{1}{3}$AB,过点M作MN∥BC交AD于点E,交AC于点N.
(1)求ME的长;
(2)将图中的△AMN以每秒1个单位长度的速度沿线段AB从点A向点B平移,当点A与点B重合时停止移动,△AMN运动的时间为t秒,△AMN与四边形BDEM重叠部分的面积为s,请直接写出s与t之间的函数关系式,并写出相应t的取值范围;
(3)将图中的△AMN绕点E逆时针旋转,设直线AE与直线BC交于点O.在△AMN旋转过程中,是否存在这样的点O,使△BOE为等腰三角形?若存在,请求出此时△AMN绕E逆时针旋转的旋转角α的大小(0°<α≤180°);若不存在,请说明理由.

查看答案和解析>>

科目: 来源: 题型:解答题

7.在平面直角坐标系xOy中,直线y=-$\frac{1}{2}$x+6与x轴、y轴分别交于点A、B,与直线y=x相交于点C.
(1)直接写出点C的坐标;
(2)如图,现将直角∠FCE绕直角顶点C旋转,旋转时始终保持直角边CF与x轴、y轴分别交于点F、点D,直角边CE与x轴交于点E.
①在直角∠FCE旋转过程中,tan∠CED的值是否会发生变化?若改变,请说明理由,若不变,请求出这个值;
②在直角∠FCE旋转过程中,是否存在以C、E、F为顶点的三角形与△ODE相似?若存在,求出点D的坐标,若不存在,请说明理由.

查看答案和解析>>

科目: 来源: 题型:解答题

6.阅读下面材料:
小明遇到这样一个问题:如图1,在等边三角形ABC内有一点P,且PA=3,PB=4,PC=5,求∠APB度数.
小明发现,利用旋转和全等的知识构造△AP′C,连接PP′,得到两个特殊的三角形,从而将问题解决(如图2).
请回答:图1中∠APB的度数等于150°,图2中∠PP′C的度数等于90°.
参考小明思考问题的方法,解决问题:
如图3,在平面直角坐标系xOy中,点A坐标为(-$\sqrt{3}$,1),连接AO.如果点B是x轴上的一动点,以AB为边作等边三角形ABC.当C(x,y)在第一象限内时,求y与x之间的函数表达式.

查看答案和解析>>

科目: 来源: 题型:解答题

5.如图1,在Rt△ABC中,∠ACB=90°,∠B=60°,D为AB的中点,∠EDF=90°,DE交AC于点G,DF经过点C.
(1)求∠ADE的度数;
(2)如图2,将图1中的∠EDF绕点D顺时针方向旋转角a(0°<a<60°),旋转过程中的任意两个位置分别记为∠E1DF1,∠E2DF2,DE1交直线AC于点P,DF1交直线BC于点Q,DE2交直线AC于点M,DF2交直线BC于点N,求$\frac{PM}{QN}$的值;
(3)若图1中∠B=β(60°<β<90°),(2)中的其余条件不变,判断$\frac{PM}{QN}$的值是否为定值,如果是,请直接写出这个值(用含β的式子表示);如果不是,请说明理由.

查看答案和解析>>

同步练习册答案