相关习题
 0  311877  311885  311891  311895  311901  311903  311907  311913  311915  311921  311927  311931  311933  311937  311943  311945  311951  311955  311957  311961  311963  311967  311969  311971  311972  311973  311975  311976  311977  311979  311981  311985  311987  311991  311993  311997  312003  312005  312011  312015  312017  312021  312027  312033  312035  312041  312045  312047  312053  312057  312063  312071  366461 

科目: 来源: 题型:选择题

16.已知二次函数的解析式为y=ax2+bx+c(a、b、c为常数,a≠0),且a2+ab+ac<0,下列说法:
①b2-4ac<0;
②ab+ac<0;
③方程ax2+bx+c=0有两个不同根x1、x2,且(x1-1)(1-x2)>0;
④二次函数的图象与坐标轴有三个不同交点,
其中正确的个数是(  )
A.1B.2C.3D.4

查看答案和解析>>

科目: 来源: 题型:选择题

15.已知一个等腰三角形两内角的度数之比为1:2,则这个等腰三角形底角的度数为(  )
A.72°B.45°C.45°或72°D.60°

查看答案和解析>>

科目: 来源: 题型:填空题

14.(1)单项式-$\frac{1}{3}$x2y3的系数是-$\frac{1}{3}$,次数是5;
(2)多项式-xy3+2x2y4-3是六次三项式.

查看答案和解析>>

科目: 来源: 题型:解答题

13.某商店准备进一批季节性小家电,每个进价为40元,经市场预测,销售定价为50元,可售出400个;定价每增加1元,销售量将减少10个.设每个定价增加x元.
(1)商店若准备获得利润6000元,并且使进货量较少,则每个定价为多少元?应进货多少个?
(2)商店若要获得最大利润,则每个定价多少元?获得的最大利润是多少?

查看答案和解析>>

科目: 来源: 题型:解答题

12.如图,AB是半圆O的直径,E是弧BC的中点,OE交弦BC于点D,已知BC=8,DE=2,求圆O的半径的长.

查看答案和解析>>

科目: 来源: 题型:填空题

11.(1)|$-\frac{2}{3}$|$÷|+\frac{3}{2}|$=$\frac{4}{9}$;
(2)-(-$\frac{1}{2}$)4=-$\frac{1}{16}$;
(3)(-1)1999-(-1)2000=-2.

查看答案和解析>>

科目: 来源: 题型:填空题

10.(1)($\sqrt{10}$-3)2014($\sqrt{10}$+3)2013=$\sqrt{10}$-3
(2)(1$+\sqrt{3}$)(3-$\sqrt{3}$)=2$\sqrt{3}$.

查看答案和解析>>

科目: 来源: 题型:解答题

9.问题提出:用n根相同的木棒搭一个三角形(木棒无剩余),能搭成多少种不同的等腰三角形?
问题探究:不妨假设能搭成m种不同的等腰三角形,为探究m与n之间的关系,我们可以从特殊入手,通过试验、观察、类比,最后归纳、猜测得出结论.
探究一:
(1)用3根相同的木棒搭成一个三角形,能搭成多少种不同的三角形?
此时,显然能搭成一种等腰三角形.所以,当n=3时,m=1
(2)用4根相同的木棒搭成一个三角形,能搭成多少种不同的三角形?
只可分成1根木棒、1根木棒和2根木棒这一种情况,不能搭成三角形,所以,当n=4时,m=0
(3)用5根相同的木棒搭成一个三角形,能搭成多少种不同的三角形?
若分成1根木棒、1根木棒和3根木棒,则不能搭成三角形
若分为2根木棒、2根木棒和1根木棒,则能搭成一种等腰三角形,所以,当n=5时,m=1
(4)用6根相同的木棒搭成一个三角形,能搭成多少种不同的三角形?
若分成1根木棒、1根木棒和4根木棒,则不能搭成三角形
若分为2根木棒、2根木棒和2根木棒,则能搭成一种等腰三角形,所以,当n=6时,m=1
综上所述,可得表①
n3456
m1011
探究二:
(1)用7根相同的木棒搭成一个三角形,能搭成多少种不同的等腰三角形?
(仿照上述探究方法,写出解答过程,并把结果填在表②中)
(2)分别用8根、9根、10根相同的木棒搭成一个三角形,能搭成多少种不同的等腰三
角形?(只需把结果填在表②中)
n78910
m
你不妨分别用11根、12根、13根、14根相同的木棒继续进行探究,…
解决问题:用n根相同的木棒搭一个三角形(木棒无剩余),能搭成多少种不同的等腰三角形?
(设n分别等于4k-1、4k、4k+1、4k+2,其中k是整数,把结果填在表 ③中)
n4k-14k4k+14k+2
m
问题应用:用2016根相同的木棒搭一个三角形(木棒无剩余),能搭成多少种不同的等腰三角形?(要求写出解答过程)
其中面积最大的等腰三角形每个腰用了672根木棒.(只填结果)

查看答案和解析>>

科目: 来源: 题型:解答题

8.操作:如图①,△ABC是等边三角形,△BDC是顶角∠BDC=120°的等腰三角形,以D为顶点作一个60°角:
(1)角的两边分别交AB、AC边于M、N两点,连接MN.探究:线段BM、MN、NC之间的关系,并加以证明.
(2)若角的两边分别交AB、CA的延长线于M、N两点,连接MN.在图②中画出图形,再直接写出线段BM、MN、NC之间的关系.

查看答案和解析>>

科目: 来源: 题型:解答题

7.观察月历:

(1)用一个长方形去框图中的4个数(如图中深色方框所示),则方框内对角线上2个数的和有什么关系?请用字母表示数将你发现的规律写出来,并说明其正确性;
(2)用一个长方形去框图中的9个数(如图中的阴影方框所示),你知道它们之间有什么关系吗?请用字母表示数写出两个正确的结论,并说明它们的正确性.

查看答案和解析>>

同步练习册答案