相关习题
 0  312454  312462  312468  312472  312478  312480  312484  312490  312492  312498  312504  312508  312510  312514  312520  312522  312528  312532  312534  312538  312540  312544  312546  312548  312549  312550  312552  312553  312554  312556  312558  312562  312564  312568  312570  312574  312580  312582  312588  312592  312594  312598  312604  312610  312612  312618  312622  312624  312630  312634  312640  312648  366461 

科目: 来源: 题型:选择题

11.如图,在△ABC中,若AD⊥BC,点E是BC边上一点,且不与点B、C、D重合,则AD是几个三角形的高线(  )
A.4个B.5个C.6个D.8个

查看答案和解析>>

科目: 来源: 题型:选择题

10.如图,△ABE≌△ACF.若AB=5,AE=2,BE=4,则CF的长度是(  )
A.2B.5C.4D.3

查看答案和解析>>

科目: 来源: 题型:选择题

9.如图,将△AOB绕点O按逆时针方向旋转60°后得到△A′OB′,若∠AOB=25°,则∠AOB′的度数是(  )
A.60°B.45°C.35°D.25°

查看答案和解析>>

科目: 来源: 题型:解答题

8.如图,抛物线y=ax2+bx+2经过点A、B,且12a+10=0,正方形OABC的AB边上的动点P以2cm/s的速度由A向点B运动,同时,点Q由点B开始沿BC边以1cm/s的速度向点C移动,设运动时间为ts.
(1)求抛物线的解析式;
(2)t为何值时,PQ∥AC?
(3)设S=PQ2,试写出S与t的函数关系式,并写出t的取值范围;
(4)在(3)中,当S取最小值时,在抛物线上有点R,使得以P、B、Q、R为顶点的四边形是平行四边形,直接写出点R坐标($\frac{12}{5}$,$\frac{6}{5}$).

查看答案和解析>>

科目: 来源: 题型:填空题

7.如图,Rt△ABC中,AC=$\sqrt{5}$,以点A为中心逆时针旋转90°得到Rt△AB′C′,则Rt△A′B′C′,则$\widehat{CC′}$的长为$\frac{\sqrt{5}}{2}$π.

查看答案和解析>>

科目: 来源: 题型:解答题

6.如图,A、B、C三点表示三个村庄,线段AB、BC、AC表示村村通公路,为解决村民手机信号问题,移动通信公司计划新建一座基站和一间物资储备室.要求基站到这三个村庄的距离相等,物资储备室到这三条村村通公路的距离相等,请你在图中用尺规作图的方式确定基站和物资储备室的位置(分别用点P和Q表示,作图不写作法,但要保留作图痕迹).

查看答案和解析>>

科目: 来源: 题型:解答题

5.广雅中学某初中毕业生利用暑假40天时间参加社会实践活动,参与了某公司旗下一家加盟店经营,了解到-种成本为30元/件的新型商品,在第x天销售的相关信息如下表所示. 
 销售量p(件) p=40-x
 销售单价q(元/件) 当1≤x≤20时,q=40+$\frac{1}{2}$x;
当21≤x≤50时,q=30+$\frac{525}{x}$
(1)请计算第几天该商品的销售单价为45元/件?
(2)这40天中该加盟店第几天获得的利润最大?最大利润是多少?
(3)在实际销售的前20天中,公司为鼓励加盟店接收大学生参加实践活动决定每销售一件商品就发给该加盟店m(m≥2)元奖励.通过该加盟店的销售记录发现,前7天中,每天获得奖励后的利润随时间x(天)的增大而增大,求m的取值范围.

查看答案和解析>>

科目: 来源: 题型:解答题

4.已知直线y=kx+3(k<0)分别交x轴、y轴于A、B两点,线段OA上有一动点P由原点O向点A运动,速度为每秒1个单位长度,过点P作x轴的垂线交直线AB于点C,设运动时间为t秒.
(1)当k=-1时,线段OA上另有一动点Q由点A向点O运动,它与点P以相同速度同时出发,当点P到达点A时两点同时停止运动(如图1).
①直接写出t=1秒时C、Q两点的坐标;
②若以Q、C、A为顶点的三角形与△AOB相似,求t的值.
(2)当k=-$\frac{3}{4}$时,设以C为顶点的抛物线y=(x+m)2+n与直线AB的另一交点为D(如图2),
①求CD的长;
②设△COD的OC边上的高为h,当t为何值时,h的值最大?

查看答案和解析>>

科目: 来源:2016-2017学年广东省东莞市堂星晨学校七年级3月月考数学试卷(解析版) 题型:解答题

先化简,再求值: ,其

查看答案和解析>>

科目: 来源: 题型:填空题

3.如图,在△ABC中,∠ABC=45°,∠ACB=60°,BC=2$\sqrt{3}$+2,D是BC边上异于B、C的一动点,将三角形ABD沿AB翻折得到△ABD1,将△ACD沿AC翻折得到△ACD2,连接D1D2,则四边形D1BCD2的面积的最大值是9+4$\sqrt{3}$.

查看答案和解析>>

同步练习册答案