科目: 来源: 题型:
【题目】如图,在平面直角坐标系中,点O是坐标原点,四边形ABCO是菱形,点A的坐标为(-3,4),点C在x轴的正半轴上,直线AC交y轴于点M,AB边交y轴于点H,连接BM.
(1)求直线AC的解析式;
(2)动点P从点A出发,沿折线ABC的方向以2个单位/秒的速度向终点C匀速运动,设△PMB的面积为S,点P的运动时间为t秒,求S与t之间的函数关系式(要求写出自变量t的取值范围);
(3)动点P从点A出发,沿线段AB方向以2个单位/秒的速度向终点B匀速运动,当∠MPB与∠BCO互为余角时,试确定t的值.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,已知ABCD中,AE⊥BC于点E,以点B为中心,取旋转角等于∠ABC,把△BAE顺时针旋转,得到△BA′E′,连接DA′.若∠ADC=60°,∠ADA′=50°,则∠DA′E′的大小为( )
A.130° B.150° C.160° D.170°
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,⊙O的半径为4,B是⊙O外一点,连接OB,且OB=6,延长BO交⊙O于点A,点D为⊙O上一点,过点A作直线BD的垂线,垂足为C,AD平分∠BAC.
(1)求证:BC是⊙O的切线;
(2)求AC的长.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,已知抛物线y=x2+bx+c与y轴交于点C,与x轴交于点A、B,且AB=2,抛物线的对称轴为直线x=2;
(1)求抛物线的函数表达式;
(2)如果抛物线的对称轴上存在一点P,使得△APC周长的值最小,求此时P点坐标及△APC周长;
(3)设D为抛物线上一点,E为对称轴上一点,若以点A、B、D、E为顶点的四边形是平行四边形,求点D的坐标.(直接写出结果)
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在平面直角坐标系xOy中,函数y=-x的图象l是第二、四象限的角平分线.
(1)实验与探究:由图观察易知A(-1,3)关于直线l的对称点A′的坐标为(-3,1),请你写出点B(5,3)关于直线l的对称点B′的坐标为 ;
(2)归纳与发现:结合图形,自己选点再试一试,通过观察点的坐标,你会发现:坐标平面内任一点P(m,n)关于第二、四象限的角平分线l的对称点P′的坐标为 ;
(3)运用与拓广:
①已知两点C(6,0),D(2,4),试在直线l上确定一点P,使点P到C,D两点的距离之和最小,在图中画出点P的位置,保留作图痕迹,并求出点P的坐标.
②在①的条件下,试求出PC+PD的最小值.
查看答案和解析>>
科目: 来源: 题型:
【题目】指出下列命题的条件和结论.
(1)两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行;
(2)如果∠1=∠2,∠2=∠3,那么∠1=∠3;
(3)锐角小于它的余角;
(4)如果a+c=b+c,那么a=b.
查看答案和解析>>
科目: 来源: 题型:
【题目】下列说法中,正确的有( )
①无限小数都是有理数;②不循环小数不是有理数;
③不是有理数的数都是无限小数;④0是有理数
A. 1个 B. 2个 C. 3个 D. 4个
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com