科目: 来源: 题型:
【题目】已知:△ABC在直角坐标平面内,三个顶点的坐标分别为A(0,3)、B(3,4)、C(2,2)(正方形网格中每个小正方形的边长是一个单位长度).
(1)、在网格内画出△ABC向下平移4个单位长度得到的,并写出点的坐标是 ;
(2)、以点B为位似中心,在网格内画出,使与△ABC位似,且位似比为2︰1,并写出点的坐标是 ;
(3)、的面积是 平方单位.
查看答案和解析>>
科目: 来源: 题型:
【题目】坐标平面内一点A(1,2),O是原点,P是x轴上一个动点,如果以点P、O、A为顶点的三角形为等腰三角形,那么符合条件的动点P的个数为( )
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目: 来源: 题型:
【题目】下列每组数分别是三根小木棒的长度,用它们能摆成三角形的是( )
A. 3cm,4cm,8cm B. 8cm,7cm,15cm
C. 13cm,12cm,20cm D. 5cm,5cm,11cm
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,是的直径,且,点为的延长线上一点,过点作的切线、,切点分别为、.
(1)、连接,若,试证明是等腰三角形;
(2)、填空:①当= 时,四边形是菱形;②当= 时,四边形是正方形.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图甲,点C将线段AB分成两部分(AC>BC),如果=,那么称点C为线段AB的黄金分割点.某数学兴趣小组在进行课题研究时,由黄金分割点联想到“黄金分割线”,类似地给出“黄金分割线”的定义:直线l将一个面积为S的图形分成面积分别为S1,S2(S1>S2)的两部分,如果=,那么称直线l为该图形的黄金分割线.
(1)如图乙,在△ABC中,∠A=36°,AB=AC,∠ACB的平分线交AB于点D,请问点D是否是AB边上的黄金分割点,并证明你的结论;
(2)若△ABC在(1)的条件下,如图丙,请问直线CD是不是△ABC的黄金分割线,并证明你的结论;
(3)如图丁,在Rt△ABC中,∠ACB=90°,D为斜边AB上的一点,(不与A,B重合)过D作DE⊥BC于点E,连接AE,CD相交于点F,连接BF并延长,与DE,AC分别交于点G,H.请问直线BH是直角三角形ABC的黄金分割线吗?并说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,初三一班数学兴趣小组的同学欲测量公园内一棵树DE的高度,他们在这棵树正前方一座楼亭前的台阶上A点处测得树顶端D的仰角为30°.朝着这棵树的方向走到台阶下的点C处,测得树顶端D的仰角为60°,已知A点的高度AB为2米,台阶AC的坡度为1:(即AB:BC=1:),且B,C,E三点在同一条直线上,请根据以上条件求出树DE的高度.(测量器的高度忽略不计)
查看答案和解析>>
科目: 来源: 题型:
【题目】一水果贩子在批发市场按每千克1.8元批发了若干千克的西瓜进城出售,为了方便,他带了一些零钱备用.他先按市场价售出一些后,又降价出售.售出西瓜千克数x与他手中持有的钱数y元(含备用零钱)的关系如图所示,结合图象回答下列问题:
(1)农民自带的零钱是多少?
(2)降价前他每千克西瓜出售的价格是多少?
(3)随后他按每千克下降0.5元将剩余的西瓜售完,这时他手中的钱(含备用的钱)是450元,问他一共批发了多少千克的西瓜?
(4)请问这个水果贩子一共赚了多少钱?
查看答案和解析>>
科目: 来源: 题型:
【题目】小明每天上午9时骑自行车离开家,15时回家,他描绘了离家的距与时间的变化情况.
(1)图象表示哪两个变量的关系?哪个是自变量?哪个是因变量?
(2)10时和13时,他分别离家多远?
(3)他到达离家最远的地方时什么时间?离家多远?
(4)11时到12时他行驶了多少千米?
(5)他由离家最远的地方返回的平均速度是多少.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com