科目: 来源: 题型:
【题目】如图,二次函数的图象与x轴交与A(4,0),并且OA=OC=4OB,点P为过A、B、C三点的抛物线上一动点.
(1)、求点B、点C的坐标并求此抛物线的解析式;
(2)、是否存在点P,使得△ACP是以点C为直角顶点的直角三角形?若存在,求出点P的坐标;若不存在,说明理由;
(3)、过动点P作PE垂直于y轴于点E,交直线AC于点D,过点D作x轴的垂线,垂足为F,连接EF,当线段EF的长度最短时,求出点P的坐标.
查看答案和解析>>
科目: 来源: 题型:
【题目】图1是一个长为2m、宽为2n的长方形,沿图中虚线用剪刀均分成四块小长方形,然后按图2的形状拼成一个正方形.
(1)请用两种不同的方法求图2中阴影部分的面积.
方法1: ;
方法2: ;
(2)观察图2请你写出下列三个代数式:(m+n)2,(m-n)2,mn之间的等量关系 ;
(3)根据(2)题中的等量关系,解决如下问题:
①已知:,,求:的值;
②已知:,,求:的值.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图:已知AB∥CD,EF⊥AB于点O,∠FGC=125°,求∠EFG的度数.
下面提供三种思路:
(1)过点F作FH∥AB;
(2)延长EF交CD于M;
(3)延长GF交AB于K.
请你利用三个思路中的两个思路,
将图形补充完整,求∠EFG的度数.
解(一):
解(二):
查看答案和解析>>
科目: 来源: 题型:
【题目】完成下列证明:
如图,已知AD⊥BC,EF⊥BC,∠1=∠2.
求证:DG∥BA.
证明:∵AD⊥BC,EF⊥BC(已知)
∴∠EFB=∠ADB=90°( )
∴EF∥AD( )
∴∠1=∠BAD( )
又∵∠1=∠2(已知)
∴ (等量代换)
∴DG∥BA.( )
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com