科目: 来源: 题型:
【题目】如图1,点O是正方形ABCD两对角线的交点,分别延长OD到点G,OC到点E,使OG=2OD,OE=2OC,然后以OG、OE为邻边作正方形OEFG,连接AG,DE.
(1)、求证:DE⊥AG;
(2)、如图2,正方形ABCD固定,将正方形OEFG绕点O逆时针旋转α角(0°<α<360°),得到正方形OE′F′G′;
①在旋转过程中,当∠OAG′是直角时,求α的度数;
②若正方形ABCD的边长为2,在旋转过程中,求AF′长的最大值和此时α的度数,直接写出结果不必说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】在△ABC中,D是BC边上的一点,E是AD的中点,过A点作BC的平行线交CE的延长线于F,且AF=BD,连接BF.
(1)求证:BD=CD.
(2)如果AB=AC,试判断四边形AFBD的形状,并证明你的结论.
查看答案和解析>>
科目: 来源: 题型:
【题目】下列说法:①直径是弦;②经过三点一定可以作圆;③三角形的外心到三角形各顶点的距离相等;④长度相等的弧是等弧;⑤平分弦的直径垂直于弦.其中正确的是(填序号).
查看答案和解析>>
科目: 来源: 题型:
【题目】关于特殊四边形对角线的性质,矩形具备而平行四边形不一定具备的是( )
A. 对角线互相平分B. 对角线互相垂直
C. 对角线相等D. 对角线平分一组对角
查看答案和解析>>
科目: 来源: 题型:
【题目】将△ABC绕点A按逆时针方向旋转θ度,并使各边长变为原来的n倍,得△AB′C′,即如图①,我们将这种变换记为[θ,n].
(1)、如图①,对△ABC作变换[50°,]得△AB′C′,则S△AB′C′:S△ABC= ;直线BC与直线B′C′所夹的锐角为 度;
(2)、如图②,△ABC中,∠BAC=30°,∠ACB=90°,对△ABC 作变换[θ,n]得△AB'C',使点B、C、C′在同一直线上,且四边形ABB'C'为矩形,求θ和n的值;
(3)、如图③,△ABC中,AB=AC,∠BAC=36°,BC=l,对△ABC作变换[θ,n]得△AB′C′,使点B、C、B′在同一直线上,且四边形ABB'C'为平行四边形,求θ和n的值.
查看答案和解析>>
科目: 来源: 题型:
【题目】下列各式中,正确的是( )
A. 2a+3b=5ab B. ﹣2xy﹣3xy=﹣xy C. ﹣2(a﹣6)=﹣2a+6 D. 5a﹣7=﹣(7﹣5a)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com