科目: 来源: 题型:
【题目】已知等腰Rt△ABC和等腰Rt△AED中,∠ACB=∠AED=90°,且AD=AC.
(1)发现:如图1,当点E在AB上且点C和点D重合时,若点M、N分别是DB、EC的中点,则MN与EC的位置关系是 ,MN与EC的数量关系是 .
(2)探究:若把(1)小题中的△AED绕点A顺时针旋转45°得到的图2,连接BD和EC,并连接DB、EC的中点M、N,则MN与EC的位置关系和数量关系仍然能成立吗?若成立,请给予证明,若不成立,请说明理由.
(3)若把(1)小题中的△AED绕点A逆时针旋转45°得到的图3,连接BD和EC,并连接DB、EC的中点M、N,则MN与EC的位置关系和数量关系仍然能成立吗?若成立,请给予证明,若不成立,请说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】下列命题中,真命题是( )
A. 两条对角线相等的四边形是矩形
B. 两条对角线互相垂直的四边形是菱形
C. 两条对角线互相垂直且相等的四边形是矩形
D. 两条对角线互相平分的四边形是平行四边形
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在一次夏令营活动中,小玲从营地A出发,沿北偏东60°方向走了m到达B点,然后再沿北偏西30°方向走了500m到达目的地C点.(1)求A,C两点之间的距离.(2)确定目的地C在营地A什么方向.
查看答案和解析>>
科目: 来源: 题型:
【题目】通过类比联想、引申拓展研究典型题目,可达到解一题知一类的目的.下面是一个案例,请补充完整.
原题:如图1,点E、F分别在正方形ABCD的边BC、CD上,∠EAF=45°,
连接EF,则EF=BE+DF,试说明理由.
(1)思路梳理
∵AB=AD
∴把△ABE绕点A逆时针旋转90°至△ADG,可使AB与AD重合
∵∠ADC=∠B=90°
∴∠FDG=180°
∴点F、D、G共线
根据 ,易证△AFG≌ ,进而得EF=BE+DF.
(2)联想拓展
如图2,在△ABC中,∠BAC=90°,AB=AC,点D、E均在边BC上,且∠DAE=45°.猜想BD、DE、EC应满足的数量关系,并写出推理过程.
查看答案和解析>>
科目: 来源: 题型:
【题目】为执行“均衡教育”政策,我县2015年投入教育经费2500万元,预计2017年投入3600万元,若每年投入教育经费的年平均增长百分率为x,则可列方程为 .
查看答案和解析>>
科目: 来源: 题型:
【题目】2015年我市有1.6万名初中毕业生参加升学考试,为了了解这1.6万名考生的数学成绩,从中抽取2000名考生的数学成绩进行统计,在这个问题中样本是( )
A.1.6万名考生 B.2000名考生
C.1.6万名考生的数学成绩 D.2000名考生的数学成绩
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com