科目: 来源: 题型:
【题目】把多边形的某些边向两方延长,其他各边若不全在延长所得直线的同侧,则把这样的多边形叫做凹多边形.如图①五边形中,作直线,则边、分别在直线的两侧,所以五边形就是一个凹五边形.我们简单研究凹多边形的边和角的性质.
(1)如图②,在凹六边形中,探索与、、、、、之间的关系;
(2)如图③,在凹四边形中,证明.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在平面直角坐标系中,将△ABO绕点A顺时针旋转到△AB1C1的位置,点B、O分别落在点B1、C1处,点B1在x轴上,再将△AB1C1绕点B1顺时针旋转到△A1B1C2的位置,点C2在x轴上,将△A1B1C2绕点C2顺时针旋转到△A2B2C2的位置,点A2在x轴上,依次进行下去….若点A(,0),B(0,2),则点B2016的坐标为______________.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知四边形ABCD是平行四边形,对角线AC、BD交于点O,E是BC的中点,以下说法错误的是( )
A. OE=DC B. OA=OC C. ∠BOE=∠OBA D. ∠OBE=∠OCE
查看答案和解析>>
科目: 来源: 题型:
【题目】阅读下列材料并解答问题:
我们知道的几何意义是在数轴上数对应的点与原点的距离: ,也就是说, 表示在数轴上数与数0对应点之间的距离;
这个结论可以推广为表示在数轴上数和数对应的点之间的距离;
例1解方程,容易看出,在数轴上与原点距离为2的点对应的数为,即该方程的解为.
例2解不等式,如图,在数轴上找出的解,即到1的距离为2的点对应的数为,3,则的解集为或.
例3解方程由绝对值的几何意义知,该方程表示求在数轴上与1和的距离之和为5的对应的的值.在数轴上,1和的距离为3,满足方程的对应的点在1的右边或的左边,若对应的点在1的右边,由下图可以看出;同理,若对应的点在的左边,可得,故原方程的解是或.
回答问题:(只需直接写出答案)
①解方程
②解不等式
③解方程
查看答案和解析>>
科目: 来源: 题型:
【题目】为了推动课堂教学改革,打造“高效课堂”,我市某中学对该校八年级部分学生就一学期以来“分组合作学习”方式的支持程度进行调查,统计情况如图,请根据图中提供的信息,回答下列问题:
(1)本次调查的八年级部分学生共有______名;请补全条形统计图;
(2)若该校八年级学生共有540人,请你估计该校八年级有多少名学生支持“分组合作学习”方式(含“非常喜欢”和“喜欢”两种情况的学生)?
查看答案和解析>>
科目: 来源: 题型:
【题目】某部队将在指定山区进行军事演习,为了使道路便于部队重型车辆通过,部队工兵连接到抢修一段长3600米道路的任务,按原计划完成总任务的后,为了让道路尽快投入使用,工兵连将工作效率提高了50%,一共用了10小时完成任务.
(1)按原计划完成总任务的时,已抢修道路 米;
(2)求原计划每小时抢修道路多少米?
查看答案和解析>>
科目: 来源: 题型:
【题目】如图(1),点为线段上一点,过点作射线,使,将一直角三角板的直角顶点放在点处,一边在射线上,另一边在线段的下方.
(1)将图(1)中的直角三角板绕点按逆时针方向旋转,使落在射线上(如图(2)),则三角板旋转的角度为____度;
(2)继续将图2中的直角三角板绕点按逆时针方向旋转,使在的内部(如图3).试求与度数的差;
(3)若图1中的直角三角板绕点按逆时针方向旋转一周,在此过程中:
①当直角边所在直线恰好垂直于时, 的度数是________;
②设直角三角板绕点按每秒的速度旋转,当直角边所在直线恰好平分时,求三角板绕点旋转时间的值.
查看答案和解析>>
科目: 来源: 题型:
【题目】某中学开展“阳光体育一小时”活动,根据学校实际情况,决定开设A:踢毽子;B:篮球;C:跳绳;D:乒乓球四种运动项目.为了解学生最喜欢哪一种运动项目,随机抽取了一部分学生进行调查,并将调查结果绘制成如下两个统计图.请结合图中的信息解答下列问题:
(1)本次共调查了多少名学生?
(2)请将两个统计图补充完整.
(3)若该中学有1200名学生,喜欢篮球运动项目的学生约有多少名?
查看答案和解析>>
科目: 来源: 题型:
【题目】如图是一根可伸缩的鱼竿,鱼竿是用10节大小不同的空心套管连接而成.闲置时鱼竿可收缩,完全收缩后,鱼竿长度即为第1节套管的长度(如图1所示):使用时,可将鱼竿的每一节套管都完全拉伸(如图2所示).图3是这跟鱼竿所有套管都处于完全拉伸状态下的平面示意图.已知第1节套管长50cm,第2节套管长46cm,以此类推,每一节套管均比前一节套管少4cm.完全拉伸时,为了使相邻两节套管连接并固定,每相邻两节套管间均有相同长度的重叠,设其长度为xcm.
(1)请直接写出第5节套管的长度;
(2)当这根鱼竿完全拉伸时,其长度为311cm,求x的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com