科目: 来源: 题型:
【题目】如图,在Rt△ABC中,∠ACB=90°,AC=BC=3,点D在边AC上,且AD=2CD,DE⊥AB,垂足为点E,联结CE,求:
(1)线段BE的长;
(2)∠ECB的余切值.
查看答案和解析>>
科目: 来源: 题型:
【题目】某国发生8.1级强烈地震,我国积极组织抢险队赴地震灾区参与抢险工作,如图,某探测对在地面A、B两处均探测出建筑物下方C处由生命迹象,已知探测线与地面的夹角分别是25°和60°,且AB=4米,求该生命迹象所在位置C的深度.(结果精确到1米,参考数据:sin25°≈0.4,cos25°≈0,9,tan25°≈0.5,≈1.7)
查看答案和解析>>
科目: 来源: 题型:
【题目】探索研究.请解决下列问题:
(1)已知△ABC中,∠A=90°,∠B=67.5°,请画一条直线,把这个三角形分割成两个等腰三角形.(请你选用下面给出的备用图,并把所有不同的分割方法都画出来,图不够可以自己画.只需画图,不必说明理由,但要在图中标出相等两角的度数).
(2)已知等腰△ABC中,AB=AC,D为BC上一点,连接AD,若△ABD和△ACD都是等腰三角形,则∠B的度数为 (请画出示意图,并标明必要的角度).
查看答案和解析>>
科目: 来源: 题型:
【题目】(2016江西省)设抛物线的解析式为 ,过点B1 (1,0 )作x轴的垂线,交抛物线于点A1(1,2 );过点B2 (1,0 )作x轴的垂线,交抛物线于点A2 ,… ;过点 (,0 ) (n为正整数 )作x轴的垂线,交抛物线于点 ,连接 ,得直角三角形.
(1)求a的值;
(2)直接写出线段 ,的长(用含n的式子表示);
(3)在系列Rt△ 中,探究下列问题:
①当n为何值时,Rt△是等腰直角三角形?
②设1≤k<m≤n (k,m均为正整数),问是否存在Rt△与Rt△相似?若存在,求出其相似比;若不存在,说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】某种笔记本原售价是每本5元,凡一次购买两本或以上可享受优惠价格,第1种:两本按原价,其余按七折优惠;第2种:全部按原价的八折优惠,若想在购买相同数量的情况下,要使第1种比第2种更优惠,则至少购买笔记本________________本 .
查看答案和解析>>
科目: 来源: 题型:
【题目】如图为放置在水平桌面上的台灯的平面示意图,灯臂AO长为40cm,与水平面所形成的夹角∠OAM为75°.由光源O射出的边缘光线OC,OB与水平面所形成的夹角∠OCA,∠OBA分别为90°和30°,求该台灯照亮水平面的宽度BC(不考虑其他因素,结果精确到0.1cm.温馨提示:sin75°≈0.97,cos75°≈0.26,≈1.73).
查看答案和解析>>
科目: 来源: 题型:
【题目】线段CD是由线段AB平移得到的,点A(4,7)的对应点为C(1,4),则点B(4,1)的对应点D的坐标为( )
A.(9,4)B.(1,2)C.(2,9)D.(5,3)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com