科目: 来源: 题型:
【题目】(2016山东潍坊第18题)在平面直角坐标系中,直线l:y=x﹣1与x轴交于点A1,如图所示依次作正方形A1B1C1O、正方形A2B2C2C1、…、正方形AnBnCnCn﹣1,使得点A1、A2、A3、…在直线l上,点C1、C2、C3、…在y轴正半轴上,则点Bn的坐标是 .
查看答案和解析>>
科目: 来源: 题型:
【题目】下列说法正确的是( )
A.有一个角是直角的平行四边形是正方形
B.有一组邻边相等的矩形是正方形
C.对角线相等且互相垂直的四边形是正方形
D.四条边都相等的四边形是正方形
查看答案和解析>>
科目: 来源: 题型:
【题目】在下列命题中,是假命题的是( )
A. 有一个角是直角的平行四边形是矩形 B. 一组邻边相等的矩形是正方形
C. 一组对边平行且相等的四边形是平行四边形 D. 有两组邻边相等的四边形是菱形
查看答案和解析>>
科目: 来源: 题型:
【题目】问题背景:“半角问题”:
(1)如图:在四边形ABCD中,AB=AD,∠BAD=120°,∠B=∠ADC=90°.E,F分别是BC,CD上的点.且∠EAF=60°.探究图中线段EF,BE,FD之间的数量关系.
小明同学探究此“半角问题”的方法是:延长FD到点G.使DG=BE.连结AG,先证明△ABE≌△ADG,再证明△AEF≌△AGF,可得出结论,他的结论应是 ;(直接写结论,不需证明)
探索延伸:当聪明的你遇到下面的问题该如何解决呢?
(2)若将(1)中“∠BAD=120°,∠EAF=60°”换为∠EAF=∠BAD.其它条件不变。如图1,试问线段EF、BE、FD具有怎样的数量关系,并证明.
(3)如图2,在四边形ABCD中,AB=AD,∠B+∠D=180°,E、F分别是边BC、CD上的点,且∠EAF=∠BAD,请直接写出线段EF、BE、FD它们之间的数量关系.(不需要证明)
(4)如图3,在四边形ABCD中,AB=AD,∠B+∠ADC=180°,E、F分别是边BC、CD延长线上的点,且∠EAF=∠BAD,试问线段EF、BE、FD具有怎样的数量关系,并证明.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图1,在等腰直角△ABC中,∠ACB=90°,AC=BC,直线MN经过点C,且AD⊥MN于D,BE⊥MN于E.
(1)求证:△ADC≌△CEB;
(2)求证:AD+BE=DE;
(3)当直线MN绕点C旋转到图2的位置时,试问DE、AD、BE具有怎样的等量关系?请写出这个等量关系,并加以说明.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,直线y=x+4与x轴、y轴分别交于点A和点B,点C、D分别为线段AB、OB的中点,点P为OA上一动点,PC+PD值最小时点P的坐标为( )
A.(﹣3,0) B.(﹣6,0) C.(﹣,0) D.(﹣,0)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com