科目: 来源: 题型:
【题目】如图所示,△ABC中,AC=BC,以BC为直径作⊙O交AB于点D,交AC于点G,作直线DF⊥AC交AC于点F,交CB的延长线于点E.
(1)求证:直线EF四⊙O的切线;
(2)若BC=6,AB=4,求DE的长.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知:在Rt△ABC,∠ABC=90°,∠C=60°,现将一个足够大的直角三角板的顶点P放在斜边AC上.
(1)设三角板的两直角边分别交边AB、BC于点M、N.
①当点P是AC的中点时,分别作PE⊥AB于点E,PF⊥BC于点F,得到图1,写出图中的一对全等三角形;
②在①的条件下,写出与△PEM相似的三角形,并直接写出PN与PM的数量关系.
(2)移动点P,使AP=2CP,将三角板绕点P旋转,设旋转过程中三角板的两直角边分别交边AB、BC于点M、N(PM不与边AB垂直,PN不与边BC垂直);或者三角板的两直角边分别交边AB、BC的延长线与点M、N.
③请在备用图中画出图形,判断PM与PN的数量关系,并选择其中一种图形证明你的结论;
④在③的条件下,当△PCN是等腰三角形时,若BC=3cm,则线段BN的长是 .
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在边长为6的正方形ABCD中,E是边CD的中点,将△ADE沿AE对折至△AFE,延长EF交边BC于点G,连接AG.
(1)求证:△ABG≌△AFG;(2)求BG的长.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,∠1+∠2=180°,∠3=∠B,试判断∠AED与∠C的大小关系,并证明你的结论.
解:∠C与∠AED相等,理由如下:
∵∠1+∠2=180°(已知),∠1+∠DFE=180°(邻补角定义)
∴∠2= . ( . ),
∴AB∥EF( . )
∴∠3= . ( . )
又∠B=∠3(已知)
∴∠B= . (等量代换)
∴DE∥BC( . )
∴∠C=∠AED( . ).
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com