相关习题
 0  341815  341823  341829  341833  341839  341841  341845  341851  341853  341859  341865  341869  341871  341875  341881  341883  341889  341893  341895  341899  341901  341905  341907  341909  341910  341911  341913  341914  341915  341917  341919  341923  341925  341929  341931  341935  341941  341943  341949  341953  341955  341959  341965  341971  341973  341979  341983  341985  341991  341995  342001  342009  366461 

科目: 来源: 题型:

【题目】如图,已知射线CD∥OA,点E、点F是OA上的动点,CE平分∠OCF,且满足∠FCA=∠FAC.

(1)若∠O=∠ADC,判断AD与OB的位置关系,证明你的结论.
(2)若∠O=∠ADC=60°,求∠ACE的度数.
(3)在(2)的条件下左右平行移动AD,∠OEC和∠CAD存在怎样的数量关系?请直接写出结果(不需写证明过程)

查看答案和解析>>

科目: 来源: 题型:

【题目】2017年我国约有9400000人参加高考,将9400000用科学记数法表示为

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,已知抛物线与坐标轴分别交于点A(0,8)、B(8,0)和点E,动点C从原点O开始沿OA方向以每秒1个单位长度移动,动点D从点B开始沿BO方向以每秒1个单位长度移动,动点C、D同时出发,当动点D到达原点O时,点C、D停止运动.

(1)直接写出抛物线的解析式:

(2)求△CED的面积S与D点运动时间t的函数解析式;当t为何值时,△CED的面积最大?最大面积是多少?

(3)当△CED的面积最大时,在抛物线上是否存在点P(点E除外),使△PCD的面积等于△CED的最大面积?若存在,求出P点的坐标;若不存在,请说明理由.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图1所示,已知抛物线的顶点为D,与x轴交于A、B两点,与y轴交于C点,E为对称轴上的一点,连接CE,将线段CE绕点E按逆时针方向旋转90°后,点C的对应点C′恰好落在y轴上.

(1)直接写出D点和E点的坐标;

(2)点F为直线C′E与已知抛物线的一个交点,点H是抛物线上C与F之间的一个动点,若过点H作直线HG与y轴平行,且与直线C′E交于点G,设点H的横坐标为m(0<m<4),那么当m为何值时,=5:6?

(3)图2所示的抛物线是由向右平移1个单位后得到的,点T(5,y)在抛物线上,点P是抛物线上O与T之间的任意一点,在线段OT上是否存在一点Q,使△PQT是等腰直角三角形?若存在,求出点Q的坐标;若不存在,请说明理由.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图所示,在正方形ABCD中,M为AB的中点,N为AD上的一点,且AN= AD,试猜测△CMN是什么三角形,请证明你的结论.(提示:正方形的四条边都相等,四个角都是直角)

查看答案和解析>>

科目: 来源: 题型:

【题目】下列运算正确的是(
A.﹣2x2y3xy2=﹣6x2y2
B.(﹣x﹣2y)(x+2y)=x2﹣4y2
C.6x3y2÷2x2y=3xy
D.(4x3y22=16x9y4

查看答案和解析>>

科目: 来源: 题型:

【题目】解方程3﹣5(x+2)=x去括号正确的是(
A.3﹣x+2=x
B.3﹣5x﹣10=x
C.3﹣5x+10=x
D.3﹣x﹣2=x

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,ABC是直角三角形,ACB=90°.

(1)尺规作图:作C,使它与AB相切于点D,与AC相交于点E,保留作图痕迹,不写作法,请标明字母

(2)在你按(1)中要求所作的图中,若BC=3,A=30°,求的长.

查看答案和解析>>

科目: 来源: 题型:

【题目】某公司生产的某种产品每件成本为40元,经市场调查整理出如下信息:①该产品90天内日销售量(m件)与时间(第x天)满足一次函数关系,部分数据如下表:

②该产品90天内每天的销售价格与时间(第x天)的关系如下表:

(1)求m关于x的一次函数表达式;

(2)设销售该产品每天利润为y元,请写出y关于x的函数表达式,并求出在90天内该产品哪天的销售利润最大?最大利润是多少?【提示:每天销售利润=日销售量×(每件销售价格﹣每件成本)】

(3)在该产品销售的过程中,共有多少天销售利润不低于5400元,请直接写出结果.

查看答案和解析>>

科目: 来源: 题型:

【题目】为了加强对校内外安全监控,创建荔湾平安校园,某学校计划增加15台监控摄像设备,现有甲、乙两种型号的设备,其中每台价格,有效监控半径如表所示,经调查,购买1台甲型设备比购买1台乙型设备多150元,购买2台甲型设备比购买3台乙型设备少400元.

甲型

乙型

价格(元/台)

a

b

有效半径(米/台)

150

100


(1)求a、b的值.
(2)若购买该批设备的资金不超过11000元,且两种型号的设备均要至少买一台,学校有哪几种购买方案?
(3)在(2)问的条件下,若要求监控半径覆盖范围不低于1600米,为了节约资金,请你设计一种最省钱的购买方案.

查看答案和解析>>

同步练习册答案