相关习题
 0  341937  341945  341951  341955  341961  341963  341967  341973  341975  341981  341987  341991  341993  341997  342003  342005  342011  342015  342017  342021  342023  342027  342029  342031  342032  342033  342035  342036  342037  342039  342041  342045  342047  342051  342053  342057  342063  342065  342071  342075  342077  342081  342087  342093  342095  342101  342105  342107  342113  342117  342123  342131  366461 

科目: 来源: 题型:

【题目】如图1,AB=BC=CD=DA,∠A=∠B=∠BCD=∠ADC=90°,点E是AB上一点,点F是AD延长线上一点,且DF=BE.

(1)求证:CE=CF;
(2)在图1中,如果点G在AD上,且∠GCE=45°,那么EG=BE+DG是否成立,请说明理由.

(3)运用(1)、(2)解答中所积累的经验和知识,完成下题:如图2,AD∥BC(BC>AD),∠B=90°,AB=BC=12,点E是AB上一点,且∠DCE=45°,BE=4,求DE的长.

查看答案和解析>>

科目: 来源: 题型:

【题目】2013年第一季度,泰州市共完成工业投资22300000000元,22300000000这个数可用科学记数法表示为

查看答案和解析>>

科目: 来源: 题型:

【题目】写出一个两根分别为02的一元二次方程:___

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,所有正方形的中心均在坐标原点,且各边与x轴或y轴平行.从内到外,它们的边长依次为2,4,6,8,…,顶点依次用A1 , A2 , A3 , A4 , …表示,则顶点A55的坐标是( )

A.(13,13)
B.(﹣13,﹣13)
C.(14,14)
D.(﹣14,﹣14)

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在BCE中,点A是边BE上一点,以AB为直径的⊙OCE相切于点DADOC,点FOC与⊙O的交点,连接AF.

1)求证:CB是⊙O的切线;

2)若∠ECB=60°AB=6,求图中阴影部分的面积.

查看答案和解析>>

科目: 来源: 题型:

【题目】解方程:2x﹣9=5x+3.

查看答案和解析>>

科目: 来源: 题型:

【题目】先化简,再求值: 其中x的值从不等式组的整数解中选取.

查看答案和解析>>

科目: 来源: 题型:

【题目】如果点P(2x+6,x﹣4)在平面直角坐标系的第四象限内,那么x的取值范围在数轴上可表示为( )
A.
B.
C.
D.

查看答案和解析>>

科目: 来源: 题型:

【题目】阅读下面材料:

小伟遇到这样一个问题:如图1,在△ABC(其中∠BAC是一个可以变化的角)中,AB=2,AC=4,以BC为边在BC的下方作等边△PBC,求AP的最大值.

小伟是这样思考的:利用变换和等边三角形将边的位置重新组合.他的方法是以点B为旋转中心将△ABP逆时针旋转60°得到△A′BC,连接A′A,当点A落在A′C上时,此题可解(如图2).

(1)请你回答:AP的最大值是

(2)参考小伟同学思考问题的方法,解决下列问题:

如图3,等腰Rt△ABC.边AB=4,P为△ABC内部一点,请写出求AP+BP+CP的最小值长的解题思路.

提示:要解决AP+BP+CP的最小值问题,可仿照题目给出的做法.把△ABP绕B点逆时针旋转60,得到△A′BP′.

①请画出旋转后的图形

②请写出求AP+BP+CP的最小值的解题思路(结果可以不化简).

查看答案和解析>>

科目: 来源: 题型:

【题目】某学生某月有零花钱a元,其支出情况如图所示,那么下列说法不正确的是(
A.该学生捐赠款为0.6a元
B.捐赠款所对应的圆心角为240°
C.捐赠款是购书款的2倍
D.其他消费占10%

查看答案和解析>>

同步练习册答案