科目: 来源: 题型:
【题目】如图,已知直线y=﹣x+4与两坐标轴分别相交于点A,B两点,点C是线段AB上任意一点,过C分别作CD⊥x轴于点D,CE⊥y轴于点E.双曲线 与CD,CE分别交于点P,Q两点,若四边形ODCE为正方形,且 ,则k的值是( )
A.4
B.2
C.
D.
查看答案和解析>>
科目: 来源: 题型:
【题目】质地均匀的骰子六个面分别刻有1到6的点数,掷两次骰子,得到向上一面的两个点数,则下列事件中,发生可能性最大的是( )
A.点数都是偶数
B.点数的和为奇数
C.点数的和小于13
D.点数的和小于2
查看答案和解析>>
科目: 来源: 题型:
【题目】如图所示,数轴上有A、B、C、D四个点,分别对应的数为a、b、c、d,且满足a=﹣2,|b|=0,(c﹣12)2与|d﹣18|互为相反数.
(1)b=;c=;d= .
(2)若A、B两点以2个单位长度/秒的速度向右匀速运动,同时C、D两点以1个单位长度/秒的速度向左匀速运动,并设运动时间为t秒,问t为多少时,A、C两点相遇?
(3)在(2)的条件下,A、B、C、D四点继续运动,当点B运动到点D的右侧时,问是否存在时间t,使得B与D的距离是C与D的距离的3倍?若存在,求时间t;若不存在,请说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】用两种方法证明“三角形的外角和等于360°”.
如图,∠BAE、∠CBF、∠ACD是△ABC的三个外角.
求证∠BAE+∠CBF+∠ACD=360°.
证法1:∵ ,∴∠BAE+∠1+∠CBF+∠2+∠ACD+∠3=180°×3=540°
∴∠BAE+∠CBF+∠ACD=540°﹣(∠1+∠2+∠3).
∵ ,∴∠BAE+∠CBF+∠ACD=540°﹣180°=360°.
请把证法1补充完整,并用不同的方法完成证法2.
查看答案和解析>>
科目: 来源: 题型:
【题目】由5个大小相同的小正方体拼成的几何体如图所示,则下列说法正确的是( )
A.主视图的面积最小
B.左视图的面积最小
C.俯视图的面积最
D.三个视图的面积相等
查看答案和解析>>
科目: 来源: 题型:
【题目】如图1,点O是正方形ABCD两对角线的交点,分别延长OD到点G,OC到点E,使OG=2OD,OE=2OC,然后以OG、OE为邻边作正方形OEFG,连接AG,DE.
(1)、求证:DE⊥AG;
(2)、如图2,正方形ABCD固定,将正方形OEFG绕点O逆时针旋转α角(0°<α<360°),得到正方形OE′F′G′;
①在旋转过程中,当∠OAG′是直角时,求α的度数;
②若正方形ABCD的边长为2,在旋转过程中,求AF′长的最大值和此时α的度数,直接写出结果不必说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,动点A从原点出发向数轴负方向运动,同时,动点B也从原点出发向数轴正方向运动,3s后,两点相距15个单位长度.已知动点A、B的速度比是1:4(速度单位:单位长度/s).
(1)求出两个动点运动的速度,并在数轴上标出A、B两点从原点出发运动3s时的位置;
(2)若A、B两点从(1)中的位置同时向数轴负方向运动,几秒时,原点恰好处在两个动点的正中间?
(3)在(2)中原点恰好处在两个动点的正中间时,A、B两点同时向数轴负方向运动,另一动点C和点B同时从点B位置出发向A运动,当遇到A后,立即返回向点B运动,遇到点B后又立即返回向点A运动,如此往返,直到B追上A时,C立即停止运动.若点C一直以20单位长度/s的速度匀速运动,那么点C从开始运动到停止运动,行驶的路程是多少个单位长度?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com