科目: 来源: 题型:
【题目】如图:
(1)如果∠1=∠4,根据 , 可得AB∥CD;
(2)如果∠1=∠2,根据 , 可得AB∥CD;
(3)如果∠1+∠3=180,根据 , 可得AB∥CD .
查看答案和解析>>
科目: 来源: 题型:
【题目】综合题
(1)如图①,若∠B+∠D=∠BED,试猜想AB与CD的位置关系,并说明理由。
(2)如图②,要想得到AB∥CD,则∠1、∠2、∠3之间应满足怎样的位置关系?请探索。
查看答案和解析>>
科目: 来源: 题型:
【题目】如图1是一个用铁丝围成的篮框,我们来仿制一个类似的柱体形篮框.如图2,它是由一个半径为r、圆心角90°的扇形A2OB2,矩形A2C2EO、B2D2EO,及若干个缺一边的矩形状框A1C1D1B1、A2C2D2B2、…、AnBnCnDn,OEFG围成,其中A1、G、B1在上,A2、A3…、An与B2、B3、…Bn分别在半径OA2和OB2上,C2、C3、…、Cn和D2、D3…Dn分别在EC2和ED2上,EF⊥C2D2于H2,C1D1⊥EF于H1,FH1=H1H2=d,C1D1、C2D2、C3D3、CnDn依次等距离平行排放(最后一个矩形状框的边CnDn与点E间的距离应不超过d),A1C1∥A2C2∥A3C3∥…∥AnCn.
(1)求d的值;
(2)问:CnDn与点E间的距离能否等于d?如果能,求出这样的n的值,如果不能,那么它们之间的距离是多少?
查看答案和解析>>
科目: 来源: 题型:
【题目】已知抛物线C:,直线l:y=kx(k>0),当k=1时,抛物线C与直线l只有一个公共点.
(1)求m的值;
(2)若直线l与抛物线C交于不同的两点A,B,直线l与直线l1:y=﹣3x+b交于点P,且,求b的值;
(3)在(2)的条件下,设直线l1与y轴交于点Q,问:是否在实数k使S△APQ=S△BPQ?若存在,求k的值,若不存在,说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知:如图,请分别根据已知条件进行推理,得出结论,并在括号内注明理由.
①∵ ∠B=∠3(已知),∴∥.( , )
②∵∠1=∠D (已知),∴∥.( , )
③∵∠2=∠A (已知),∴∥.( , )
④∵∠B+∠BCE=180° (已知),∴∥.( , )
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com