科目: 来源: 题型:
【题目】如图,点C在线段AB上,AC=8 cm,CB=6 cm,点M,N分别是AC,BC的中点.
(1)求线段MN的长.
(2)若C为线段AB上任一点,满足AC+CB=a cm,其他条件不变,你能猜想MN的长度吗?(用含a的代数式表示)并说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知抛物线y=ax2+bx+c(a<0)过A(-3,0),B(1,0),C(-5,y 1),D(5,y 2)四点,则y1与y2的大小关系是( )
A.y1>y2B.y1=y2C.y1<y2D.不能确定
查看答案和解析>>
科目: 来源: 题型:
【题目】七年级进行法律知识竞赛,共有30道题,答对一道题得4分,不答或答错一道题扣2分.
(1)小红同学参加了竞赛,成绩是90分,请问小红在竞赛中答对了多少道题?
(2)小明也参加了竞赛,考完后他说:“这次竞赛我一定能拿到100分.”请问小明有没有可能拿到100分?试用方程的知识来说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】某商品的进价为每件40元,当售价为每件60元时,每星期可卖出300件,现需降价处理,且经市场调查,每降价1元,每星期可多卖出20件,在确保盈利的前提下,解答下列问题:
(1)若设每件降价x(x为整数)元,每星期售出商品的利润为y元,请写出x与y之间的函数关系式,并求出自变量x的取值范围;
(2)请画出上述函数的大致图象.
(3)当降价多少元时,每星期的利润最大?最大利润是多少?
小丽解答过程如下:
解:(1)根据题意,可列出表达式:
y=(60-x)(300+20x)-40(300+20x),
即y=-20x2+100x+6000.
∵降价要确保盈利,∴40<60-x60.解得0x<20.
(2)上述表达式的图象是抛物线的一部分,函数的大致图象如图1:
(3)∵a=-20<0,
∴当x==2.5时,y有最大值,y==6125.
所以,当降价2.5元时,每星期的利润 最大,最大利润为6125.
老师看了小丽的解题过程,说小马第(1)问的表达式是正确的,但自变量x的取值范围不准确.(2)(3)问的答案,也都存在问题.请你就老师说的问题,进行探究,写出你认为(1)(2)(3)中正确的答案,或说明错误原因.
查看答案和解析>>
科目: 来源: 题型:
【题目】在数学活动课上,同学们判断一个四边形门框是否为矩形.下面是某学习小组4位同学拟定的方案,其中正确的是
A. 测量对角线是否平分 B. 测量两组对边是否分别相等
C. 测量其中三个角是否是直角 D. 测量对角线是否相等
查看答案和解析>>
科目: 来源: 题型:
【题目】水龙头关闭不严会造成滴水,为了调查漏水量与漏水时间的关系,可在滴水的水龙下放置一个水杯,每5分钟称一次水杯的重,如下表:
时间t(分) | 15 | 20 | 25 | … |
重量w(克) | 65 | 80 | 95 | … |
若水杯的重量w是滴水时间t的一次函数,则滴水时间为32分时,水杯的重量为( )
A.107克
B.110克
C.113克
D.116克
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com