科目: 来源: 题型:
【题目】如图,在Rt△ABC中,∠ACB=90°,∠B=30°,AD平分∠CAB.
(1)求∠CAD的度数;
(2)延长AC至E,使CE=AC,求证:DA=DE.
查看答案和解析>>
科目: 来源: 题型:
【题目】我市中小学全面开展“阳光体育”活动,某校在大课间中开设了A(体操)、B(乒乓球)、C(毽球)、D(跳绳)四项活动.为了解学生最喜欢哪一项活动,随机抽取了部分学生进行调查,并将调查结果绘制成了如下两幅不完整的统计图,请根据统计图回答下列问题:
(1)这次被调查的学生共有人;
(2)请将统计图2补充完整;
(3)统计图1中B项目对应的扇形的圆心角是度;
(4)已知该校共有学生1000人,根据调查结果估计该校喜欢体操的学生有人.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,以扇形OAB的顶点O为原点,半径OB所在的直线为x轴建立平面直角坐标系,点B的坐标为(2,0),扇形的圆心角是60°,若抛物线 y=x+k与扇形OAB的边界总有两个公共点,则实数取值范围是
A. -4<k< B. -2<k<
C. -4<k< D. --2<k<
查看答案和解析>>
科目: 来源: 题型:
【题目】在直角坐标系中,点A、B的坐标分别为(﹣2,4)、(﹣5,2),点M、N分别是x轴、y轴上的点,若以点A、B、M、N为顶点的四边形是平行四边形,则点M的横坐标的所有可能的值是 .
查看答案和解析>>
科目: 来源: 题型:
【题目】(10分)问题:如图(1),在Rt△ACB中,∠ACB=90°,AC=CB,∠DCE=45°,试探究AD、DE、EB满足的等量关系.
[探究发现]
小聪同学利用图形变换,将△CAD绕点C逆时针旋转90°得到△CBH,连接EH,由已知条件易得∠EBH=90°,∠ECH=∠ECB+∠BCH=∠ECB+∠ACD=45°.根据“边角边”,可证△CEH≌ ,得EH=ED.
在Rt△HBE中,由 定理,可得BH2+EB2=EH2,由BH=AD,可得AD、DE、EB之间的等量关系是 .
[实践运用]
(1)如图(2),在正方形ABCD中,△AEF的顶点E、F分别在BC、CD边上,高AG与正方形的边长相等,求∠EAF的度数;
(2)在(1)条件下,连接BD,分别交AE、AF于点M、N,若BE=2,DF=3,BM=2,运用小聪同学探究的结论,求正方形的边长及MN的长.
查看答案和解析>>
科目: 来源: 题型:
【题目】(10分)在△ABC中,BE、CF分别是AC、AB两条边上的高,在BE上截取BD=AC,在CF的延长线上截取CG=AB,连结AD、AG。求证:AG=AD
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com