科目: 来源: 题型:
【题目】已知一次函数y=kx+b的图象经过点(2,3),与y轴交于点B(0,4),与x轴交于点A.
(1)一次函数的表达式为;
(2)方程kx+b=0的解为;
(3)求该函数图象与两坐标轴围成的三角形的面积.
查看答案和解析>>
科目: 来源: 题型:
【题目】下列命题:
(1)三边长为5,12,13的三角形是直角三角形;
(2)等边三角形是轴对称图形,它只有一条对称轴;
(3)有两边及第三边上的高线对应相等的两个锐角三角形全等;
(4)把正比例函数y=2x的图象向上平移两个单位所得的直线表达式为y=2x+2.
其中真命题的是( )
A. (1)(2)(3) B. (1)(3)(4) C. (1)(2)(4) D. (1)(4)
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,AB是半圆O的直径,射线AM⊥AB,点P在AM上,连接OP交半圆O于点D,PC切半圆O于点C,连接BC,OC.
(1)求证:△OAP≌△OCP;
(2)若半圆O的半径等于2,填空:
①当AP= 时,四边形OAPC是正方形;
②当AP= 时,四边形BODC是菱形.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图1,二次函数y=ax2+bx+3经过点A(3,0),G(﹣1,0)两点.
(1)求这个二次函数的解析式;
(2)若点M时抛物线在第一象限图象上的一点,求△ABM面积的最大值;
(3)抛物线的对称轴交x轴于点P,过点E(0, )作x轴的平行线,交AB于点F,是否存在着点Q,使得△FEQ∽△BEP?若存在,请直接写出点Q的坐标;若不存在,请说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】数学小组的两位同学准备测量两幢教学楼之间的距离,如图,两幢教学楼AB和CD之间有一景观池(AB⊥BD,CD⊥BD),一同学在A点测得池中喷泉处E点的俯角为42°,另一同学在C点测得E点的俯角为45°(点B,E,D在同一直线上),两个同学已经在学校资料室查出楼高AB=15m,CD=20m,求两幢教学楼之间的距离BD.
(结果精确到0.1m,参考数据:sin42°≈0.67,cos42°≈0.74,tan42°≈0.90)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com