科目: 来源: 题型:
【题目】如图,在平面直角坐标系中,点A、B的坐标分别是(0,2)、(4,0),点P是直线y=2x+2上的一动点,当以P为圆心,PO为半径的圆与△AOB的一条边所在直线相切时,点P的坐标为__________.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在Rt△ABC中,∠A=90°,AD⊥BC,垂足为D.给出下列四个结论:①sinα=sinB;②sinβ=sinC;③sinB=cosC;④sinα=cosβ.其中正确的结论有_____.
查看答案和解析>>
科目: 来源: 题型:
【题目】甲、乙两个学校乐团,决定向某服装厂购买同样的演出服。下面是服装厂给出的演出服装的价格表:经调查:两个乐团共75人(甲乐团人数不少于40人),如果分别各自购买演出服,按每人一套的标准两个乐团共需花费5600元。请回答以下问题:
购买服装的套数 | 1~39套(含39套) | 40~79套(含79套) | 80套及以上 |
每套服装的价格 | 80元 | 70元 | 60元 |
(1)如果甲、乙两个乐团联合起来购买服装,那么比各自购买服装最多可以节省多少元?
(2)甲、乙两个乐团各有多少人?
(3)现从甲乐团抽调a人,从乙乐团抽调b人(要求从每个乐团抽调的人数不少于5人),去儿童福利院献爱心演出,并在演出后每位乐团成员向儿童们进行“心连心活动”;甲乐团每位成员负责3位小朋友,乙乐团每位成员负责5位小朋友,这样恰好使得福利院65位小朋友全部得到“心连心活动”的温暖。请写出所有的抽调方案,并说明理由。
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,AB为⊙O的直径,点E在⊙O上,C为的中点,过点C作直线CD⊥AE于D,连接AC,BC.
(1)试判断直线CD与⊙O的位置关系,并说明理由;
(2)若AD=2,AC=,求AB的长.
查看答案和解析>>
科目: 来源: 题型:
【题目】抛物线y=–x2+bx+c经过点A(3,0)和点B(0,3),且这个抛物线的对称轴为直线l,顶点为C.
(1)求抛物线的解析式;
(2)连接AB、AC、BC,求△ABC的面积.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,五边形ABCDE中,∠A=140°,∠B=120°,∠E=90°,CP和DP分别是∠BCD、∠EDC的外角平分线,且相交于点P,则∠CPD=__________°.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,△ABD≌△CDB,且AB,CD是对应边.下面四个结论中不正确的是( )
A. △ABD和△CDB的面积相等B. △ABD和△CDB的周长相等
C. ∠A+∠ABD=∠C+∠CBDD. AD∥BC,且AD=BC
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,已知点A(a,b),B(1,6)为平面直角坐标系内两点,且a,b满足b=﹣+2,AB的延长线交y轴于点C.
(1)点A的坐标为 (直接写出结果);
(2)如图1,点P(m,4)为线段AB上的点.
①点C坐标为 (直接写出结果)
②求m的值;
(3)如图2,若Q为第四象限直线AB上一点,将QC绕Q点逆时针旋转50°,交x轴负半轴于点D,在第二象限内有点E,使x轴、y轴分别平分∠EDQ,∠ECQ,试求∠CED的度数,
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,AB∥CD,点A,E,B,C不在同一条直线上.
(1)如图1,求证:∠E+∠C﹣∠A=180°
(2)如图2.直线FA,CP交于点P,且∠BAF=∠BAE,∠DCP=∠DCE.
①试探究∠E与∠P的数量关系;
②如图3,延长CE交PA于点Q,若AE∥PC,∠BAQ=α(0°<α<22.5°),则∠PQC的度数为 (用含α的式子表示)
查看答案和解析>>
科目: 来源: 题型:
【题目】有一块面积为100cm2的正方形纸片.
(1)该正方形纸片的边长为 cm(直接写出结果);
(2)小丽想沿着该纸片边的方向裁剪出一块面积为90cm2的长方形纸片,使它的长宽之比为4:3.小丽能用这块纸片裁剪出符合要求的纸片吗?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com