科目: 来源: 题型:
【题目】如图,△ABC中,AB=5cm,BC=3cm,AC=4cm,若动点P从点C开始,按C→A→B的路径运动,且速度为每秒2cm,设出发的时间为t秒
(1)请判断△ABC的形状,说明理由.
(2)当t= 时,△BCP是以BC为腰的等腰三角形.
(3)另有一点Q,从点C开始,按C→B→A→C的路径运动,且速度为每秒1cm,若P、Q两点同时出发,当P、Q中有一点到达终点时,另一点也停止运动.当t为何值时,P、Q两点之间的距离为?
查看答案和解析>>
科目: 来源: 题型:
【题目】近年来,新能源汽车以其舒适环保、节能经济的优势受到热捧,随之而来的就是新能汽车销量的急速增加,当前市场上新能漂汽车从动力上分纯电动和混合动力两种,从用途上又分为乘用式和商用式两种,据中国汽车工业协会提供的信息,2017年全年新能源乘用车的累计销量为57.9万辆,其中,纯电动乘用车销量为46.8万辆,混合动力乘用车销量为11.1万辆; 2017年全年新能源商用车的累计销量为19.8万辆,其中,纯电动商用车销量为18.4万辆,混合动力商用车销量为1.4万辆,请根据以上材料解答下列问题:
(1)请用统计表表示我国2017年新能源汽车各类车型销量情况;
(2)小颖根据上述信息,计算出2017年我国新能源各类车型总销量为77.7万辆,并绘制了“2017年我国新能源汽车四类车型销量比例”的扇形统计图,如图1,请你将该图补充完整(其中的百分数精确到0.1%);
(3)2017年我国新能源乘用车销量最高的十个城市排名情况如图2,请根据图2中信息写出这些城市新能源乘用车销售情况的特点(写出一条即可);
(4)数据显示,2018年1~3月的新能源乘用车总销量排行榜上位居前四的厂家是比亚迪、北汽、上汽、江准,参加社会实践的大学生小王想对其中两个厂家进行深入调研,他将四个完全相同的乒乓球进行编号(用“1,2,3,4”依次对应上述四个厂家),并将乒乓球放入不透明的袋子中搅匀,从中一次拿出两个乒乓球,根据乒乓球上的编号决定要调研的厂家.求小王恰好调研“比亚迪”和“江淮”这两个厂家的概率.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,AC是ABCD的对角线,点E是边AD的中点,连接BE交AC于点F,连接CE,DF,若∠BEC=∠BAC=90°,则sin∠DFE的值为_____.
查看答案和解析>>
科目: 来源: 题型:
【题目】某班级在探究“将军饮马问题”时抽象出数学模型:
直线l同旁有两个定点A、B,在直线上存在点P,使得PA+PB的值最小.解法:如图1,作点A关于直线的对称点,连接,则与直线l的交点即为P,且PA+PB的最小值为.
请利用上述模型解决下列问题:
(1)几何应用:如图2,△ABC中,∠C=90°,AC=BC=2,E是AB的中点,P是BC边上的一动点,则PA+PE的最小值为 ;
(2)代数应用:求代数式+ (0≤x≤3)的最小值.
(3)几何拓展:如图3,△ABC中,AC=2,∠A=30°,若在AB、AC上各取一点M、N使BM+MN的值最小,最小值是 ;
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在长方形纸片ABCD中,AB=3,AD=9,折叠纸片ABCD,使顶点C落在边AD上的点G处,折痕分别交边AD、BC于点E、F,则△GEF的面积最大值是_____.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,AB∥CD,∠ABK的角平分线BE的反向延长线和∠DCK的角平分线CF的反向延长线交于点H,∠K﹣∠H=27°,则∠K=( )
A. 76° B. 78° C. 80° D. 82°
查看答案和解析>>
科目: 来源: 题型:
【题目】综合与探究
如图1,抛物线y=ax2+bx+2与x轴交于A(﹣1,0),B(4,0)两点,与y轴交于点C,连接AC,BC.D为坐标平面第四象限内一点,且使得△ABD与△ABC全等.
(1)求抛物线的表达式.
(2)请直接写出点D的坐标,并判断四边形ACBD的形状.
(3)如图2,将△ABD沿y轴的正方形以每秒1个单位长度的速度平移,得到△A′B′D′,A′B′与BC交于点E,A′D′与AB交于点F.连接EF,AB′,EF与AB′交于点G.设运动的时间为t(0≤t≤2)秒.
①当直线EF经过抛物线的顶点T时,请求出此时t的值;
②请直接写出点G经过的路径的长.
查看答案和解析>>
科目: 来源: 题型:
【题目】综合与实践﹣四边形旋转中的数学
“智慧”数学小组在课外数学活动中研究了一个问题,请帮他们解答.
任务一:如图1,在矩形ABCD中,AB=6,AD=8,E,F分别为AB,AD边的中点,四边形AEGF为矩形,连接CG.
(1)请直接写出CG的长是______.
(2)如图2,当矩形AEGF绕点A旋转(比如顺时针旋转)至点G落在边AB上时,请计算DF与CG的长,通过计算,试猜想DF与CG之间的数量关系.
(3)当矩形AEGF绕点A旋转至如图3的位置时,(2)中DF与CG之间的数量关系是否还成立?请说明理由.
任务二:“智慧”数学小组对图形的旋转进行了拓展研究,如图4,在ABCD中,∠B=60°,AB=6,AD=8,E,F分别为AB,AD边的中点,四边形AEGF为平行四边形,连接CG.“智慧”数学小组发现DF与CG仍然存在着特定的数量关系.
(4)如图5,当AEGF绕点A旋转(比如顺时针旋转),其他条件不变时,“智慧”数学小组发现DF与CG仍然存在着这一特定的数量关系.请你直接写出这个特定的数量关系.
查看答案和解析>>
科目: 来源: 题型:
【题目】李克强总理说:”一个国家养成全民阅读习惯非常重要…我希望全民阅读能够形成一种氛围,无处不在.“为了响应国家的号召,某”希望“学校的全体师生掀起了阅读的热潮.下面是该校三个年级的学生人数分布扇形统计图与学生在4月份阅读课外书籍人次的统计图表,其中七年级的学生人数为240人.请解答下列问题:
图书种类 | 频数 | 频率 |
科普书籍 | A | B |
文学 | 1200 | C |
漫画丛书 | D | 0.35 |
其他 | 200 | 0.05 |
(1)该校七年级学生人数所在扇形的圆心角为______°,该校的学生总人数为______人;
(2)请补全条形统计图;
(3)为了鼓励学生读书,学校决定在“五四”青年节举行两场读书报告会.报告会的内容从“科普书籍”“文学”“漫画丛书”“其他”中任选两个.用画树状图或列表的方法求两场报告会的内容恰好是“科普书籍”与“漫画丛书”的概率.(“科普书籍”“文学”“漫画丛书”“其他”,可以分别用K,W,M,Q来表示)
查看答案和解析>>
科目: 来源: 题型:
【题目】在某市实施城中村改造的过程中,“旺鑫”拆迁工程队承包了一项10000 m2的拆迁工程.由于准备工作充分,实际拆迁效率比原计划提高了25%,提前2天完成了任务,请解答下列问题:
(1)求“旺鑫”拆迁工程队现在平均每天拆迁多少平方米;
(2)为了尽量减少拆迁给市民带来的不便,在拆迁工作进行了2天后,“旺鑫”拆迁工程队的领导决定加快拆迁工作,将余下的拆迁任务在5天内完成,那么“旺鑫”拆迁工程队平均每天至少再多拆迁多少平方米?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com