科目: 来源: 题型:
【题目】如图1,在长方形中,,有一只蚂蚁在点 处开始以每秒1个单位的速度沿边向点爬行,另一只蚂蚁从点以每秒2个单位的速度沿边向点爬行,蚂蚁的大小忽略不计,如果、同时出发,设运动时间为s.
(1)当时,求的面积;
(2)当 时,试说明是直角二角形;
(3)当运动3s时,点停止运动,点以原速立即向点返回,在返回的过程中,是否存在点,使得平分?若存在,求出点运动的时间,若不存在请说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】在美化校园的活动中,某兴趣小组想借助如图所示的直角墙角(两边足够长),用28 m长的篱笆围成一个矩形花园ABCD(篱笆只围AB,BC两边),设AB=x m.若在P处有一棵树与墙CD,AD的距离分别是15 m和6 m,要将这棵树围在花园内(含边界,不考虑树的粗细),则花园面积S的最大值为( )
A. 196 B. 195 C. 132 D. 14
查看答案和解析>>
科目: 来源: 题型:
【题目】(1)如图(1),已知△ABC,以AB、AC为边向△ABC外作等边三角形ABD和等边三角形ACE,连接BE、CD.请你完成图形,并证明:BE=CD;
(2)如图(2),已知△ABC,以AB、AC为边向外作正方形ABFD和正方形ACGE,连接BE、CD,BE和CD有什么数量关系?说明理由;
(3)运用(1)(2)解答中所积累的经验和知识,完成下题:如图(3),要测量河两岸相对的两点B、E的距离,已经测得∠ABC=45°,∠CAE=90°,AB=BC=1千米,AC=AE.求BE的长.
查看答案和解析>>
科目: 来源: 题型:
【题目】作图题:
如图,在10×10的正方形网格中,每个小正方形的边长都为1,网格中有一个格点△ABC(即三角形的顶点都在格点上).
(1)在图中画出△ABC关于直线l对称的△A1B1C1;
(要求:A与A1,B与B1,C与C1相对应)
(2)求出△A1B1C1面积.
(3)在直线l上找一点P,使得PA+PB的值最小.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知,抛物线与x轴正半轴交于A、B两点(A点在B点左边),且AB=4.
(1)求k值;
(2)该抛物线与直线交于C、D两点,求S△ACD;
(3)该抛物线上是否存在不同于A点的点P,使S△PCD=S△ACD?若存在,求出P点坐标.
(4)若该抛物线上有点P,使S△PCD=tS△ACD,抛物线上满足条件的P点有2个,3个,4个时,分别直接写出t的取值范围.
查看答案和解析>>
科目: 来源: 题型:
【题目】△ABC,△DEC均为直角三角形,B,C,E三点在一条直线上,过D作DM⊥AC于M.
(1)如图1,若△ABC≌△DEC,且AB=2BC.
①过B作BN⊥AC于N,则线段AN,BN,MN之间的数量关系为: ;(直接写出答案)
②连接ME,求的值;
(2)如图2,若AB=CE=DE,DM=2,MC=1,求ME的长.
查看答案和解析>>
科目: 来源: 题型:
【题目】某研究所将某种材料加热到1000℃时停止加热,并立即将材料分为A、B两组,采用不同工艺做降温对比实验,设降温开始后经过x min时,A、B两组材料的温度分别为yA℃、yB℃,yA、yB与x的函数关系式分别为yA=kx+b,yB=(x﹣60)2+m(部分图象如图所示),当x=40时,两组材料的温度相同.
(1)分别求yA、yB关于x的函数关系式;
(2)当A组材料的温度降至120℃时,B组材料的温度是多少?
(3)在0<x<40的什么时刻,两组材料温差最大?
查看答案和解析>>
科目: 来源: 题型:
【题目】规定:身高在选定标准的±2%范围之内都称为“普通身高”.为了解某校九年级男生中具有“普通身高”的人数,我们从该校九年级500名男生中随机选出10名男生,分别测量出他们的身高(单位:cm)收集并整理统计表:
男生序号 | ① | ② | ③ | ④ | ⑤ | ⑥ | ⑦ | ⑧ | ⑨ | ⑩ |
身高 | 163 | 171 | 173 | 159 | 161 | 174 | 164 | 166 | 169 | 164 |
根据以上表格信息,解答如下问题:
(1)计算这组数据的三个统计量:平均数、中位数、众数;
(2)请你选择其中一个统计量作为选定标准,估计该校九年级男生中具有“普通身高”的人数.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com