相关习题
 0  357195  357203  357209  357213  357219  357221  357225  357231  357233  357239  357245  357249  357251  357255  357261  357263  357269  357273  357275  357279  357281  357285  357287  357289  357290  357291  357293  357294  357295  357297  357299  357303  357305  357309  357311  357315  357321  357323  357329  357333  357335  357339  357345  357351  357353  357359  357363  357365  357371  357375  357381  357389  366461 

科目: 来源: 题型:

【题目】x,y定义一种新运算F,规定:F(x,y)=(mx+ny)(3x﹣y)(其中m,n均为非零常数).例如:F(1,1)=2m+2n,F(﹣1,0)=3m.

(1)已知F(1,﹣1)=﹣8,F(1,2)=13.

①求m,n的值;

②关于a的不等式组,求a的取值范围;

(2)当x2≠y2时,F(x,y)=F(y,x)对任意有理数x,y都成立,请直接写出m,n满足的关系式.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,中,平分,且,与相交于点,交,下列结论:①;②;③;④.其中正确的是(

A.①②B.①③C.①②③D.①②③④

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在△ABC中,∠ACB为锐角,点D为射线BC上一动点,连接AD,以AD为直角边且在AD的上方作等腰直角三角形ADF,连接CF

1)若ABAC,∠BAC90°

当点D在线段BC上时(与点B不重合),试探究CFBD的数量关系和位置关系,并说明理由.

当点D在线段BC的延长线上时,中的结论是否仍然成立,请在图中画出相应图形并直接写出你的猜想.

2)如图,若ABAC,∠BAC90°,∠BCA45°,点D在线段BC上运动,试探究CFBC的位置关系,并说明理由.

查看答案和解析>>

科目: 来源: 题型:

【题目】为使中华传统文化教育更具有实效性,军宁中学开展以我最喜爱的传统文化种类为主题的调查活动,围绕在诗词、国画、对联、书法、戏曲五种传统文化中,你最喜爱哪一种?(必选且只选一种)的问题,在全校范围内随机抽取部分学生进行问卷调查,将调查结果整理后绘制成如图所示的不完整的统计图,请你根据图中提供的信息回答下列问题:

(1)本次调查共抽取了多少名学生?

(2)通过计算补全条形统计图;

(3)若军宁中学共有960名学生,请你估计该中学最喜爱国画的学生有多少名?

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在中,.

⑴已知线段AB的垂直平分线与BC边交于点P,连结AP,求证:

⑵以点B为圆心,线段AB的长为半径画弧,与BC边交于点Q,连结AQ,若,求的度数.

查看答案和解析>>

科目: 来源: 题型:

【题目】如下图,在平面直角坐标系中,对进行循环往复的轴对称变换,若原来点A坐标是,则经过第2019次变换后所得的A点坐标是________

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在矩形ABCD中,E,F分别是AD,BC的中点,AF与BE相交于点M,CE与DF相交于点N,QM⊥BE,QN⊥EC相交于点Q,PM⊥AF,PN⊥DF相交于点P,若2BC=3AB,记ABM和CDN的面积和为S,则四边形MQNP的面积为(  )

A. S B. S C. S D. S

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,四幅图象分别表示变量之间的关系,请按图象的顺序,将下面的四种情境与之对应排序.正确的顺序是(  )

篮球运动员投篮时,投出去的篮球的高度与时间的关系

去超市购买同一单价的水果,所付费用与水果数量的关系

李老师使用的是一种含月租的手机计费方式,则他每月所付话费与通话时间的关系

周末,小明从家到图书馆,看了一段时间书后,按原速度原路返回,小明离家的距离与时间的关系

A. ①②③④ B. ①③④② C. ①③②④ D. ①④②③

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,一次函数的图象分别与轴和轴交于两点,且与正比例函数的图象交于点.

1)求的值;

2)求正比例函数的表达式;

3)点是一次函数图象上的一点,且的面积是3,求点的坐标;

4)在轴上是否存在点,使的值最小?若存在,求出点的坐标,若不存在,说明理由.

查看答案和解析>>

科目: 来源: 题型:

【题目】我们已经知道,形如的无理数的化简要借助平方差公式:

例如:

下面我们来看看完全平方公式在无理数化简中的作用。

问题提出:该如何化简?

建立模型:形如的化简,只要我们找到两个数,使,这样,那么便有:

问题解决:化简

解:首先把化为,这里,由于4+3=7

即(

模型应用1

利用上述解决问题的方法化简下列各式:

1;(2

模型应用2

3)在中,,那么边的长为多少?(结果化成最简)。

查看答案和解析>>

同步练习册答案