科目: 来源: 题型:
【题目】我们经常遇到需要分类的问题,画“树形图”可以帮我们不重复、不遗漏地分类.
(例题)在等腰三角形ABC中,若∠A=80°,求∠B的度数.
∠A、∠B都可能是顶角或底角,因此需要分成如图1所示的3类,这样的图就是树形图,据此可求出∠B=
(应用)
(1)已知等腰三角形ABC周长为19,AB=7,仿照例题画出树形图,并直接写出BC的长度;
(2)将一个边长为5、12、13的直角三角形拼上一个三角形后可以拼成一个等腰三角形,图2就是其中的一种拼法,请你画出其他所有可能的情形,并在图上标出所拼成等腰三角形的腰的长度.(选用图3中的备用图画图,每种情形用一个图形单独表示,并用①、②、③…编号,若备用图不够,请自己画图补充)
查看答案和解析>>
科目: 来源: 题型:
【题目】在学校开展的数学活动课上,小明和小刚制作了一个正三楼锥(质量均匀,四个面完全相同),并在各个面上分别标记数字1,2,3,4,游戏规则如下每人投掷三棱锥两次,并记录底面的数字,如果两次所掷数字的和为单数,那么算小明赢,如果两欢所掷数字的和为偶数,那么算小明赢;
(1)请用列表或者面树状围的方法表示上述游戏中的所有可能结果.
(2)请分别隶出小明和小刚能赢的概率,并判新游戏的公平性.
查看答案和解析>>
科目: 来源: 题型:
【题目】在探索三角形全等的条件时,老师给出了定长线段a,b,且长度为b的边所对的角为n°(0<n<90°)小明和小亮按照所给条件分别画出了图1中的三角形,他们把两个三角形重合在一起(如图2),其中AB=a,BD=BC=b,发现它们不全等,但他们对该图形产生了浓厚兴趣,并进行了进一步的探究:
(1)当n=45时(如图2),小明测得∠ABC=65°,请根据小明的测量结果,求∠ABD的大小;
(2)当n≠45时,将△ABD沿AB翻折,得到△ABD′(如图3),小明和小亮发现∠D′BC的大小与角度n有关,请找出它们的关系,并说明理由;
(3)如图4,在(2)问的基础上,过点B作AD′的垂线,垂足为点E,延长AE到点F,使得EF=(AD+AC),连接BF,请判断△ABF的形状,并说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】最短路径问题:
例:如图所示,要在街道旁修建一个奶站,向居民区A、B提供牛奶,奶站应建在什么地方,才能使从A、B到它的距离之和最短.
解:只有A、C、B在一直线上时,才能使AC+BC最小.作点A关于直线“街道”的对称点A′,然后连接A′B,交“街道”于点C,则点C就是所求的点.
应用:已知:如图A是锐角∠MON内部任意一点,
在∠MON的两边OM,ON上各取一点B,C,组成三角形,使三角形周长最小.
(1)借助直角三角板在下图中找出符合条件的点B和C.
(2)若∠MON=30°,OA=10,求三角形的最小周长。
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在矩形ABCD中,E是BC上的一点,且AE=AD,又DF⊥AE于点F
(1)求证:CE=EF;
(2)若EF=2,CD=4,求矩形ABCD的面积.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,已知在△ABC中,AB=AC.
(1)试用直尺和圆规在AC上找一点D,使AD=BD(不写作法,但需保留作图痕迹).
(2)在(1)中,连接BD,若BD=BC,求∠A的度数.
查看答案和解析>>
科目: 来源: 题型:
【题目】在△ABC中,BC边上的高AG平分∠BAC.
(1)如图1,求证:AB=AC.
(2)如图2,点D、E在△ABC的边BC上,AD=AE,BC=10cm,DE=6cm,求BD的长.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,点C、E分别在直线AB、DF上,小华想知道∠ACE和∠DEC是否互补,但是他没有带量角器,只带了一副三角板,于是他想了这样一个办法:首先连结CF,再找出CF的中点O,然后连结EO并延长EO和直线AB相交于点B,经过测量,他发现EO=BO,因此他得出结论:∠ACE和∠DEC互补,而且他还发现BC=EF.小华的想法对吗?为什么?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com