科目: 来源: 题型:
【题目】在Rt△ABC中,∠A=90°,AB=AC=+2,D是边AC上的动点,BD的垂直平分线交BC于点E,连接DE,若△CDE为直角三角形,则BE的长为_____.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图是二次函数y=ax2+bx+c图象的一部分,且过点A(3,0),二次函数图象的对称轴是x=1,下列结论:
①b2>4ac;②ac>0; ③当x>1时,y随x的增大而减小; ④3a+c>0;⑤任意实数m,a+b≥am2+bm.
其中结论正确的序号是( )
A. ①②③ B. ①④⑤ C. ③④⑤ D. ①③⑤
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在平面直角坐标系中,点A(n,0)是 x 轴上一点,点 B(0,m)是y轴上一点,且满足多项式(x+m)(nx-2)的积中 x的二次项与一次项系数均为2.
(1)求出A,B两点坐标.
(2)如图1,点M为线段OA上一点,点P为 x 轴上一点,且满足BM=MN,∠NAP=45°,证明:BM⊥MN.
(3)如图2,过O作OF⊥AB于F,以OB为边在y轴左侧作等边△OBM,连接AM交OF于点N,试探究:在线段AF,AN,MN中,哪条线段等于AM与ON差的一半?请写出这个等量关系并证明.
查看答案和解析>>
科目: 来源: 题型:
【题目】八年级某班级部分同学去植树,若每人平均植树7棵,还剩9棵,若每人平均植树9棵,则有1位同学植树的棵数不到8棵.若设同学人数为x人,植树的棵数为(7x+9)棵,下列各项能准确的求出同学人数与种植的树木的数量的是( )
A. 7x+9≤8+9(x﹣1) B. 7x+9≥9(x﹣1)
C. D.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知抛物线y=ax2+bx+c(0<2a<b)的顶点为P(x0,y0),点A(1,yA),B(0,yB),C(﹣1,yC)在该抛物线上,当y0≥0恒成立时,的最小值为( )
A. 1 B. 2 C. 4 D. 3
查看答案和解析>>
科目: 来源: 题型:
【题目】如图1,∠AOB=30°,点M为射线OB上一点,平面内有一点P使∠PAM=150°且PA=AM.
(1)求证:∠OMA=∠OAP.
(2)如图2,若射线OB上有一点Q使∠POA=∠AQO,求证:OP=AQ.
(3)如图3,在(2)的条件下,过A作AH⊥OB,且OH=AH,已知N点为MQ的中点,且ON=,则OA=____________.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,线段BC=8,射线CG⊥BC,A为射线CG上一点,已知FA⊥AB且FA=AB,AE平分∠FAB,且E点满足∠EBA=∠ABC.
(1)求证:△ABE≌△AFE.
(2)证明:FD⊥BC.
(3)求△BED的周长.
查看答案和解析>>
科目: 来源: 题型:
【题目】抛物线经过点A(,0),B(,0),且与y轴相交于点C.
(1)求这条抛物线的表达式;
(2)求∠ACB的度数;
(3)设点D是所求抛物线第一象限上一点,且在对称轴的右侧,点E在线段AC上,且DE⊥AC,当△DCE与△AOC相似时,求点D的坐标.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在长方形网格中,我们把水平线和垂直线的交点称为“格点”,例如图中的点A、点B
(1)作出线段AB关于y轴对称的线段CD.并写出点A的对应点C的坐标___________.
(2)在y轴上找一点P使△ABP的周长最小,请在图中画出点P(保留作图痕迹)
(3)M为x轴上一点,请在x轴上找一点Q使∠BQO=∠AQM,请在图中画出点Q(保留作图痕迹)
查看答案和解析>>
科目: 来源: 题型:
【题目】如图1,在等腰Rt△ABC中,∠BAC=90°,点E在AC上(且不与点A、C重合).在△ABC的外部作等腰Rt△CED,使∠CED=90°,连接AD,分别以AB,AD为邻边作平行四边形ABFD,连接AF.
(1)求证:△AEF是等腰直角三角形;
(2)如图2,将△CED绕点C逆时针旋转,当点E在线段BC上时,连接AE,求证:AF=AE;
(3)如图3,将△CED绕点C继续逆时针旋转,当平行四边形ABFD为菱形,且△CED在△ABC的下方时,若AB=2,CE=2,求线段AE的长.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com