科目: 来源: 题型:
【题目】定义:如果三角形有一边上的中线长恰好等于这边的长,那么这个三角形叫“恰等三角形”,这条中线叫“恰等中线”.
(直角三角形中的“恰等中线”)
(1)如图1,在△ABC中,∠C=90°,AC=,BC=2,AM为△ABC的中线.求证:AM是“恰等中线”.
(等腰三角形中的“恰等中线”)
(2)已知,等腰△ABC是“恰等三角形”,AB=AC=20,求底边BC的平方.
(一般三角形中的“恰等中线”)
(3)如图2,若AM是△ABC的“恰等中线”,则BC2,AB2,AC2之间的数量关系为 .
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,正方形网格中的每个小正方形的边长都是1,每个小格的顶点叫做格点.
(1)在图1中以格点为顶点画一个面积为10的正方形;
(2)在图2中以格点为顶点画一个三角形,使三角形三边长分别为2、、;
(3)如图3,点A、B、C是小正方形的顶点,求∠ABC的度数.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图所示,△ACB和△ECD都是等腰直角三角形,∠ACB=∠ECD=90°,D为AB边上一点.
(1)求证:△ACE≌△BCD;
(2)若AD=5,BD=12,求DE的长.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在半径为3的⊙O中,AB是直径,AC是弦,且AC=4.过点O作直径DE⊥AC,垂足为点P,过点B的直线交AC的延长线和DE的延长线于点F、G.
(1)求线段AP、CB的长;
(2)若OG=9,求证:FG是⊙O的切线.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知∠MON=90°,有一根长为10的木棒AB的两个端点A、B分别在射线OM,ON上滑动,∠OAB的角平分线AD交OB于点D.
(1)如图(1),若OA=6,则OB= ,OD= ;
(2)如图(2),过点B作BE⊥AD,交AD的延长线于点E,连接OE,在AB滑动的过程中,线段OE,BE有何数量关系,并说明理由;
(3)若点P是∠MON内部一点,在(1)的条件下,当△ABP是以AB为斜边的等腰直角三角形时,OP2= ;
(4)在AB滑动的过程中,△AOB面积的最大值为 .
·图(1) 图(2) 备用图
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在△ABC中,∠C=90°,M为AB中点.将△ACM沿CM翻折,得到△DCM(如图2),P为CD上一点,再将△DMP沿MP翻折,使得D与B重合(如图3),给出下列四个命题:
①BP∥AC;②△PBC≌△PMC;③PC⊥BM;④∠BPC=∠BMC.
其中真命题的个数是( )
A.1B.2C.3D.4
查看答案和解析>>
科目: 来源: 题型:
【题目】从一个等腰三角形纸片的顶角顶点出发,能将其剪成两个等腰三角形纸片,则原等腰三角形纸片的顶角等于( )
A.90°B.72°C.108°D.90°或108°
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在建筑物AB上,挂着35 m长的宣传条幅AE,从另一建筑物CD的顶部D处看条幅顶端A处,仰角为45°,看条幅底端E处,俯角为37°.求两建筑物间的距离BC.
(参考数据:sin37°≈0.6,cos37°≈0.8, tan37°≈0.75)
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在△ABC中,AD是BC边上的中线,点E是AD的中点,过点A作AF∥BC交BE的延长线于F,连接CF.
(1)求证:△AEF≌△DEB;
(2)若∠BAC=90°,求证:四边形ADCF是菱形.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在四边形ABCD中,AD∥BC (BC>AD),∠D=90°,∠ABE=45°,BC=CD,
若AE=5,CE=2,则BC的长度为_________.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com