科目: 来源: 题型:
【题目】如图,在中,.
⑴已知线段AB的垂直平分线与BC边交于点P,连结AP,求证:;
⑵以点B为圆心,线段AB的长为半径画弧,与BC边交于点Q,连结AQ,若,求的度数.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在中,,,点D从点C出发沿CA方向以每秒2个单位长的速度向点A匀速运动,同时点E从点A出发沿AB方向以每秒1个单位长的速度向点B匀速运动,当其中一个点到达终点时,另一个点也随之停止运动,设点D、E运动的时间是t秒过点D作于点F,连接DE、EF.
求证:;
四边形AEFD能够成为菱形吗?如果能,求出相应的t值;如果不能,说明理由.
当t为何值时,为直角三角形?请说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在菱形中,,,,相交于点.
求边的长;
如图,将一个足够大的直角三角板角的顶点放在菱形的顶点处,绕点左右旋转,其中三角板角的两边分别与边,相交于点,,连接与相交于点.
①判断是哪一种特殊三角形,并说明理由;
②旋转过程中,当点为边的四等分点时,求的长.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在△ABC 中,点 D,E 分别在边 AC,AB 上,BD 与 CE 交于点 O,给出下列三个条件:①∠EBO=∠DCO;②BE=CD;③OB=OC.
(1)上述三个条件中,由哪两个条件可以判定△ABC 是等腰三角形?(用序号写出所有成立的情形)
(2)请选择(1)中的一种情形,写出证明过程.
查看答案和解析>>
科目: 来源: 题型:
【题目】邻边不相等的平行四边形纸片,剪去一个菱形,余下一个四边形,称为第一次操作;在余下的四边形纸片中再剪去一个菱形,又剩下一个四边形,称为第二次操作;…依此类推,若第次操作余下的四边形是菱形,则称原平行四边形为阶准菱形.如图,中,若,,则为阶准菱形.
判断与推理:
①邻边长分别为和的平行四边形是________阶准菱形;
②小明为了剪去一个菱形,进行了如下操作:如图,把沿折叠(点在上),使点落在边上的点,得到四边形.请证明四边形是菱形.
操作、探究与计算:
①已知的邻边长分别为,,且是阶准菱形,请画出及裁剪线的示意图,并在图形下方写出的值;
②已知的邻边长分别为,,满足,,请写出是几阶准菱形.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,菱形对角线、的交点是四边形对角线的中点,四个顶点、、、分别在四边形的边、、、上.
求证:四边形是平行四边形;
如图若四边形是矩形,当与重合时,已知,且菱形的面积是,求矩形的长与宽.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图所示,在矩形中,,,两条对角线相交于点.以、为邻边作第个平行四边形,对角线相交于点;再以、为邻边作第个平行四边形,对角线相交于点;再以、为邻边作第个平行四边形…依此类推.
求矩形的面积;
求第个平行四边形,第个平行四边形和第个平行四边形的面积.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,长为2,宽为的矩形纸片(),剪去一个边长等于矩形宽度的正方形(称为第一次操作);
(1)第一次操作后剩下的矩形长为,宽为 ;
(2)再把第一次操作后剩下的矩形剪去一个边长等于此时矩形宽度的正方形(称为第二次操作);如此反复操作下去.
①求第二次操作后剩下的矩形的面积;
②若在第3次操作后,剩下的图形恰好是正方形,求的值.
查看答案和解析>>
科目: 来源: 题型:
【题目】我们知道某些代数恒等式可用一些卡片拼成的图形面积来解释,例如:图A可以用来解释,实际上利用一些卡片拼成的图形面积也可以对某些整式进行乘法运算.
(1)图B可以解释的代数恒等式是_____________ ;
(2)现有足够多的正方形和矩形卡片,如图C:
①若要拼出一个面积为的矩形,则需要1号卡片 张,2号卡片 张,3号卡片 张;
②试画出一个用若干张1号卡片、2号卡片和3号卡片拼成的矩形,使该矩形的面积为,并利用你画的图形面积对进行乘法运算.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com