科目: 来源: 题型:
【题目】如图,抛物线y=ax2+bx+c的图象经过点A(﹣2,0),点B(4,0),点D(2,4),与y轴交于点C,作直线BC,连接AC,CD.
(1)求抛物线的函数表达式;
(2)E是抛物线上的点,求满足∠ECD=∠ACO的点E的坐标;
(3)点M在y轴上且位于点C上方,点N在直线BC上,点P为第一象限内抛物线上一点,若以点C,M,N,P为顶点的四边形是菱形,求菱形的边长.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知:如图,∠1=∠2,则不一定能使△ABD≌△ACD的条件是 ( )
A. AB=AC B. BD=CD C. ∠B=∠C D. ∠BDA=∠CDA
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在平面直角坐标系中,已知点A(―3,6)、B(―9,一3),以原点O为位似中心,相似比为,把△ABO缩小,则点A的对应点A′的坐标是( )
A.(―1,2)
B.(―9,18)
C.(―9,18)或(9,―18)
D.(―1,2)或(1,―2)
查看答案和解析>>
科目: 来源: 题型:
【题目】直线y=ax+b经过第二、三、四象限,那么下列结论正确的是( )
A. =a+b
B. 点(a,b)在第一象限内
C. 反比例函数,当x>0时,函数值y随x增大而减小
D. 抛物线y=ax2+bx+c的对称轴过二、三象限
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,抛物线y=﹣x2+bx+c与x轴交于点A,B,与y轴交于点C,直线y=﹣x+2经过点A,C
(1)求抛物线的解析式;
(2)点P为直线AC上方抛物线上一动点.
①连接PO,交AC于点E,求的最大值;
②过点P作PF⊥AC,垂足为点F连接PC,是否存在点P,使△PFC中的一个角等于∠CAB的2倍?若存在,请直接写出点P的坐标;若不存在,请说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在平面直角坐标系中,A(﹣2,2),B(﹣3,﹣2)(每个小正方形的边长均为1).
(1)若点D与点A关于y轴对称则点D的坐标为 .
(2)将点B向右平移5个单位,再向上平移2个单位得到点C,则点C的坐标为 .
(3)请在图中表示出D、C两点,顺次连接ABCD,并求出A、B、C、D组成的四边形ABCD的面积.
查看答案和解析>>
科目: 来源: 题型:
【题目】在平面直角坐标系上,已知点A(8,4),AB⊥y轴于B,AC⊥x轴于C,直线y=x交AB于D.
(1)直接写出B、C、D三点坐标;
(2)若E为OD延长线上一动点,记点E横坐标为a,△BCE的面积为S,求S与a的关系式;
(3)当S=20时,过点E作EF⊥AB于F,G、H分别为AC、CB上动点,求FG+GH的最小值.
查看答案和解析>>
科目: 来源: 题型:
【题目】某游泳馆普通票价20元/张,暑假为了促销,新推出两种优惠卡:
①金卡售价600元/张,每次凭卡不再收费.
②银卡售价150元/张,每次凭卡另收10元.
暑假普通票正常出售,两种优惠卡仅限暑假使用,不限次数.设游泳x次时,所需总费用为y元.
(1)分别写出选择银卡、普通票消费时,y与x之间的函数关系式;
(2)在同一坐标系中,若三种消费方式对应的函数图象如图所示,请求出点A、B、C的坐标;
(3)请根据函数图象,直接写出选择哪种消费方式更合算.
查看答案和解析>>
科目: 来源: 题型:
【题目】这是一道我们曾经探究过的问题:如图1.等腰直角三角形中,,.直线经过点,过作于点,过作于点.易证得≌.(无需证明),我们将这个模型称为“一线三等角”或者叫“K形图”.接下来,我们就利用这个模型来解决一些问题:
(模型应用)
(1)如图2.已知直线l1:与与坐标轴交于点A、B.以AB为直角边作等腰直角三角形ABC,若存在,请求出C的坐标;不存在,若说明理由.
(2)如图3已知直线l1:与坐标轴交于点A、B.将直线l1绕点A逆时针旋转45°至直线l2.直线l2在x轴上方的图像上是否存在一点Q,使得△QAB是以QA为底的等腰直角三角形?若存在,请求出直线BQ的函数关系式;若不存在,说明理由.
(拓展延伸)
(3)直线AB:与轴负半轴、轴正半轴分别交于A、B两点.分别以OB、AB为边,点B为直角顶点在第一、二象限内作等腰直角△OBF和等腰直角△ABE,连EF交y轴于P点,如图4,△EPB的面积是否确定?若确定,请求出具体的值;若不确定,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com