相关习题
 0  357530  357538  357544  357548  357554  357556  357560  357566  357568  357574  357580  357584  357586  357590  357596  357598  357604  357608  357610  357614  357616  357620  357622  357624  357625  357626  357628  357629  357630  357632  357634  357638  357640  357644  357646  357650  357656  357658  357664  357668  357670  357674  357680  357686  357688  357694  357698  357700  357706  357710  357716  357724  366461 

科目: 来源: 题型:

【题目】已知:在ABC中,∠ACB=90°,点P是线段AC上一点,过点AAB的垂线,交BP的延长线于点MMNAC于点NPQAB于点QAQ=MN 求证:

1APM是等腰三角形;

2PC=AN

查看答案和解析>>

科目: 来源: 题型:

【题目】为促进我市经济的快速发展,加快道路建设,某高速公路建设工程中需修隧道AB,如图,在山外一点C测得BC距离为200m,∠CAB=54°,∠CBA=30°,求隧道AB的长.(参考数据:sin54°≈0.81,cos54°≈0.59,tan54°≈1.38, ≈1.73,精确到个位)

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,已知AB是O的直径,CD与O相切于C,BECO.

(1)求证:BC是ABE的平分线;

(2)若DC=8,O的半径OA=6,求CE的长.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图等边三角形ABC的边长为4ADBC边上的中线FAD边上的动点EAC边上一点AE2EFCF取得最小值时∠ECF的度数为( )

A. 20° B. 25° C. 30° D. 45°

查看答案和解析>>

科目: 来源: 题型:

【题目】网瘾低龄化问题已经引起社会各界的高度关注,有关部门在全国范围内对12﹣35岁的网瘾人群进行了简单的随机抽样调查,绘制出以下两幅统计图.

请根据图中的信息,回答下列问题:

(1)这次抽样调查中共调查了  人;

(2)请补全条形统计图;

(3)扇形统计图中18﹣23岁部分的圆心角的度数是  

(4)据报道,目前我国12﹣35岁网瘾人数约为2000万,请估计其中12﹣23岁的人数

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,放置的△OAB1B1A1B2B2A2B3,…都是边长为2的等边三角形,边AOy轴上,点B1、B2、B3都在直线y=x上,则点A2018的坐标为(  )

A. (2018,2020) B. (2018,2018) C. (2020,2020) D. (2018,2020)

查看答案和解析>>

科目: 来源: 题型:

【题目】1)如图①,在锐角ABC中,BDBE三等分∠ABCCDCE三等分∠ACB,请分别写出∠A和∠D,∠A和∠E的数量关系,并选择其中一个说明理由;

2)如图②,在锐角ABC中,BDBE三等分∠ABCCDCE三等分外角∠ACM,请分别写出∠A和∠D,∠A和∠E的数量关系,并选择其中一个说明理由;

3)如图③,在锐角ABC中,BDBE三等分外角∠PBCCDCE三等分外角∠QCB,请分别直接写出∠A和∠D,∠A和∠E的数量关系.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,抛物线y=ax2+x+cA(﹣1,0),B(0,2)两点.

(1)求抛物线的解析式.

(2)M为抛物线对称轴与x轴的交点,Nx轴上对称轴上任意一点,若tanANM=,求MAN的距离.

(3)在抛物线的对称轴上是否存在点P,使△PAB为等腰三角形?若存在,请求出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目: 来源: 题型:

【题目】周末,小明和哥哥一起骑自行车从家里出发到昌南湖游玩,从家出发0.5小时后到达陶溪川,游玩一段时间后按原速前往昌南湖.小明离家80分钟后,爸爸驾车沿相同路线前往昌南湖,如图是他们离家的路程ykm)与小明离家时间xh)的函数图象,已知爸爸驾车的速度是小明骑车速度的3倍.

1)小明骑车的速度为_____km/h,爸爸驾车的速度为_____km/h.

2)小明从家到陶溪川的路程y与时间x的函数关系式为_____,他从陶溪川到昌南湖的路程y与时间x的函数关系式为______,爸爸从家到昌南湖的路程,与时间x的函数关系式为______.

3)小明从家出发多少小时后被爸爸追上?此时离家多远?

4)如果小明比爸爸晚10分钟到达昌南湖,那么昌南湖离家有多远?

查看答案和解析>>

科目: 来源: 题型:

【题目】某市在党中央实施精准扶贫政策的号召下,大力开展科技扶贫工作,帮助农民组建农副产品销售公司,某农副产品的年产量不超过100万件,该产品的生产费用y(万元)与年产量x(万件)之间的函数图象是顶点为原点的抛物线的一部分(如图①所示);该产品的销售单价z(元/件)与年销售量x(万件)之间的函数图象是如图②所示的一条线段,生产出的产品都能在当年销售完,达到产销平衡,所获毛利润为w万元.(毛利润=销售额﹣生产费用)

(1)请直接写出yx以及zx之间的函数关系式;

(2)求wx之间的函数关系式;并求年产量多少万件时,所获毛利润最大?最大毛利润是多少?

(3)由于受资金的影响,今年投入生产的费用不会超过360万元,今年最多可获得多少万元的毛利润?

查看答案和解析>>

同步练习册答案