科目: 来源: 题型:
【题目】一只不透明的袋子中装有2个白球和1个红球,这些球除颜色外都相同,搅匀后从中任意摸出1个球(不放回),再从余下的2个球中任意摸出1个球.
(1)用树状图或列表等方法列出所有可能出现的结果;
(2)求两次摸到的球的颜色不同的概率.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知,在△ABC中,∠ACB=90°,AC=BC,D为直线AB上一点,作直线CD,AE⊥CD于E,BF⊥CD于F.
(1)若D在线段AB上,如图,试猜想线段EF、AE和BF之间的数量关系,并证明你的猜想;
(2)若D在线段AB的延长线上,请你根据题意画出图形,试猜想线段EF、AE和BF之间的数量关系,并证明你的猜想.
查看答案和解析>>
科目: 来源: 题型:
【题目】在平面直角坐标系xOy中,将一块含有45°角的直角三角板如图放置,直角顶点C的坐标为(1,0),顶点A的坐标为(0,2),顶点B恰好落在第一象限的双曲线上,现将直角三角板沿x轴正方向平移,当顶点A恰好落在该双曲线上时停止运动,则此时点C的对应点C′的坐标为( )
A. (,0) B. (2,0) C. (,0) D. (3,0)
查看答案和解析>>
科目: 来源: 题型:
【题目】综合与探究
如图1,抛物线y=ax2+bx+2与x轴交于A(﹣1,0),B(4,0)两点,与y轴交于点C,连接AC,BC.D为坐标平面第四象限内一点,且使得△ABD与△ABC全等.
(1)求抛物线的表达式.
(2)请直接写出点D的坐标,并判断四边形ACBD的形状.
(3)如图2,将△ABD沿y轴的正方形以每秒1个单位长度的速度平移,得到△A′B′D′,A′B′与BC交于点E,A′D′与AB交于点F.连接EF,AB′,EF与AB′交于点G.设运动的时间为t(0≤t≤2)秒.
①当直线EF经过抛物线的顶点T时,请求出此时t的值;
②请直接写出点G经过的路径的长.
查看答案和解析>>
科目: 来源: 题型:
【题目】对于非零实数a、b,规定ab=,若(x﹣3)(3﹣2x)=0,则x的值为_____;若关于x的方程(x﹣3)(3﹣2x)﹣(3﹣x)(mx﹣2)=﹣1无解,则m的值为_____.
查看答案和解析>>
科目: 来源: 题型:
【题目】下列命题中:
①已知两实数a、b,如果a>b,那么a2>b2;②同位角相等,两直线平行;③如果两个角是直角,那么这两个角相等;④如果分式无意义,那么x=﹣;这些命题及其逆命题都是真命题的是( )
A.①②B.③④C.①③D.②④
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,AB=BC,AB⊥BC,过点B作直线l,过点A作AE⊥l于E,过点C作CF⊥l于F,则下列说法中正确的是( )
A.AC=AE+BEB.EF=AE+EBC.AC=EB+CFD.EF=EB+CF
查看答案和解析>>
科目: 来源: 题型:
【题目】定义:如图1,在△ABC和△ADE中,AB=AC=AD=AE,当∠BAC+∠DAE=180°时,我们称△ABC与△DAE互为“顶补等腰三角形”,△ABC的边BC上的高线AM叫做△ADE的“顶心距”,点A叫做“旋补中心”.
特例感知:
(1)在图2,图3中,△ABC与△DAE互为“顶补三角形”,AM,AN是“顶心距”.
①如图2,当∠BAC=90°时,AM与DE之间的数量关系为AM= DE;
②如图3,当∠BAC=120°,BC=6时,AN的长为 .
猜想论证:
(2)在图1中,当∠BAC为任意角时,猜想AM与DE之间的数量关系,并给予证明.
拓展应用
(3)如图4,在四边形ABCD,AD=AB,CD=BC,∠B=90°,∠A=60°,CD=2,在四边形ABCD的内部是否存在点P,使得△PAD与△PBC互为“顶补等腰三角形”?若存在,请给予证明,并求△PBC的“顶心距”的长;若不存在,请说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图1,在矩形ABCD中,点A(1,1),B(3,1),C(3,2),反比例函数y= (x>0)的图象经过点D,且与AB相交于点E,
(1)求反比例函数的解析式;
(2)过点C、E作直线,求直线CE的解析式;
(3)如图2,将矩形ABCD沿直线CE平移,使得点C与点E重合,求线段BD扫过的面积.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,BC是直线AE外两点,且∠1=∠2,要得到△ABE≌△ACE,需要添加的条件有①AB=AC;②BE=CE;③∠B=∠C;④∠AEB=∠AEC;⑤∠BAE=∠CAE.其中正确的( )
A.①②③B.②③④C.②③⑤D.①④⑤
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com