科目: 来源: 题型:
【题目】如图,在△ABC中,AB = AC,点D是边BC的中点,过点A、D分别作BC与AB的平行线,相交于点E,连结EC、AD.
求证:四边形ADCE是矩形.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,△ABC中,∠ABC与∠ACB的平分线交于点F,过点F作DE∥BC交AB于点D,交AC于点E,那么下列结论,①△BDF是等腰三角形;②DE=BD+CE;③若∠A=50°,∠BFC=105°;④BF=CF.其中正确的有( )
A.1个B.2个C.3个D.4个
查看答案和解析>>
科目: 来源: 题型:
【题目】(2017怀化,第10题,4分)如图,A,B两点在反比例函数的图象上,C,D两点在反比例函数的图象上,AC⊥y轴于点E,BD⊥y轴于点F,AC=2,BD=1,EF=3,则的值是( )
A. 6 B. 4 C. 3 D. 2
查看答案和解析>>
科目: 来源: 题型:
【题目】晓东在解一元二次方程时,发现有这样一种解法:如:解方程x(x+4)=6.
解:原方程可变形,得[(x+2)﹣2][(x+2)+2]=6.(x+2)2﹣22=6,(x+2)2=6+22,(x+2)2=10.直接开平方并整理,得,.我们称晓东这种解法为“平均数法”.
(1)下面是晓东用“平均数法”解方程(x+2)(x+6)=5时写的解题过程.
解:原方程可变形,得
[(x+□)﹣〇][(x+□)+〇]=5.
(x+□)2﹣〇2=5,
(x+□)2=5+〇2.
直接开平方并整理,得x1=☆,x2=¤.
上述过程中的“□”,“〇”,“☆”,“¤”表示的数分别为 , , , .
(2)请用“平均数法”解方程:(x﹣3)(x+1)=5.
查看答案和解析>>
科目: 来源: 题型:
【题目】某中学课外活动小组准备围建一个矩形生物苗圃园,其中一边靠墙,另外三边用长为米的篱笆围成,已知墙长为米.设这个苗圃园垂直于墙的一边的长为米某中学课外活动小组准备围建一个矩形生物苗圃园,其中一边靠墙,另外三边用长为米的篱笆围成,已知墙长为米.设这个苗圃园垂直于墙的一边的长为米
用含的代数式表示平行于墙的一边的长为________米,的取值范围为________;
这个苗圃园的面积为平方米时,求的值.
查看答案和解析>>
科目: 来源: 题型:
【题目】某数学兴趣小组对关于的方程提出了下列问题.
若使方程为一元二次方程,是否存在?若存在,求出并解此方程.
若使方程为一元一次方程,是否存在?若存在,请求出.你能解决这个问题吗?
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,点分别是轴上位于原点两侧的两点,点在第一象限,直线 交轴于点,直线交轴于点,.
(1)求;
(2)求点的坐标及的值;
(3)若,求直线的函数表达式.
查看答案和解析>>
科目: 来源: 题型:
【题目】在国家的宏观调控下,某市的商品房成交价由今年3月份的5000元/m2下降到5月份的4050元/m2.
(1)问4、5两月平均每月降价的百分率是多少?
(2)如果房价继续回落,按此降价的百分率,你预测到7月分该市的商品房成交均价是否会跌破3000元/m2?请说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】阅读下列一段文字,然后回答下列问题.
已知在平面内有两点P1 x1,y1 ,P1 x2,y2 其两点间的距离P1P2 = ,同时,当两点所在的直线在坐标轴或平行于坐标轴或垂直于坐标轴时,两点间距离公式可化简为|x2 x1|或|y2 y1|.
(1)已知 A (1,4)、B (-3,5),试求 A.、B两点间的距离;
(2)已知 A、B在平行于 y轴的直线上,点 A的纵坐标为-8,点 B的纵坐标为-1,试求 A、B两点的距 离;
(3)已知一个三角形各顶点坐标为 D(1,6)、E(-2,2)、F(4,2),你能判定此三角形的形状吗?说明理由:
(4)在(3)的条件下,平面直角坐标系中,在 x轴上找一点 P,使 PD+PF的长度最短,求出点 P的坐 标以及 PD+PF的最短长度.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com