相关习题
 0  357726  357734  357740  357744  357750  357752  357756  357762  357764  357770  357776  357780  357782  357786  357792  357794  357800  357804  357806  357810  357812  357816  357818  357820  357821  357822  357824  357825  357826  357828  357830  357834  357836  357840  357842  357846  357852  357854  357860  357864  357866  357870  357876  357882  357884  357890  357894  357896  357902  357906  357912  357920  366461 

科目: 来源: 题型:

【题目】RtABC中,AB=6cm,AC=8cm,动点P3cm/s从点B出发向终点C运动;动点Q1cm/s从点C出发向终点B运动,动点P,Q同时出发,以PQ为直径在BC上方作半圆O,设运动时间为t(s).

(1)当t=1时,半圆O的半径R=_______;

(2)当半圆O落在ABC的内部(包括边界)时,求t的取值范围;

(3)当点PQ的左边时,过点PPE//AB交半圆于点E.,tanEAC的值.

查看答案和解析>>

科目: 来源: 题型:

【题目】取何值时,下列各式在实数范围内有意义?

1

2

3

4

5

6.

查看答案和解析>>

科目: 来源: 题型:

【题目】低碳生活,绿色出行,自行车成为人们喜爱的交通工具.某品牌共享自行车在温州的投放量自2017年起逐月增加,据统计,该品牌共享自行车1月份投放了640辆,3月份投放了1000.

(1)该品牌共享自行车前3个月的投放量的月平均增长率相同,则这三个月一共投放了多少辆自行车?

(2)考虑到增强客户体验,该品牌共享自行车准备投入3万元向自行车生产厂商定制了一批两种规格比较高档的自行车,之后投放到某高端写字楼区域.已知自行车生产厂商生产A型车的成本价为300/辆,售价为500/辆,生产B型车的成本价为700/辆,售价为1000/.根据指定要求,B型车的数量需超过12辆,且A型车的数量不少于B型车的2.自行车生产厂商应如何设计生产方案才能获得最大利润?最大利润是多少?

查看答案和解析>>

科目: 来源: 题型:

【题目】已知:平面直角坐标系中,点A(a,b)的坐标满足|a﹣b|+b2﹣8b+16=0.

(1)如图1,求证:OA是第一象限的角平分线;

(2)如图2,过A作OA的垂线,交x轴正半轴于点B,点M、N分别从O、A两点同时出发,在线段OA上以相同的速度相向运动(不包括点O和点A),过A作AE⊥BM交x轴于点E,连BM、NE,猜想∠ONE与∠NEA之间有何确定的数量关系,并证明你的猜想;

(3)如图3,F是y轴正半轴上一个动点,连接FA,过点A作AE⊥AF交x轴正半轴于点E,连接EF,过点F点作∠OFE的角平分线交OA于点H,过点H作HK⊥x轴于点K,求2HK+EF的值.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,点M为抛物线x轴的焦点为A(-3,0),B(1,0),与y轴交于点C,连结AM,AC,点D为线段AM上一动点(不与A重合),以CD为斜边在CD上侧作等腰RtDEC,连结AE,OE.

(1)求抛物线的解析式及顶点M的坐标;

(2)求解AD:OE的值;

(3)当OEC为直角三角形时,求AD的值.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,AB是⊙的直径,过点A作⊙的切线并在其上取一点C,连接OC交⊙于点D,BD的延长线交ACE,连接AD.

(1)求证:

(2)若AB=2,,求AE的长.

查看答案和解析>>

科目: 来源: 题型:

【题目】为了加强课外阅读,开阔视野,我校开展了书香校园的主题活动.学校随机抽取了部分学生,对他们一周的课外阅读时间进行调查,绘制成如下频数分布表和不完整的频数直方

图:

请根据图表信息回答下列问题:

(1)频数分布表中的a=_______,b=_______;

(2)将频数直方图补充完整;

(3)全校共有学生1200人,若规定阅读时间超过2小时则评为优秀阅读员,请估计能评为优秀阅读员的学生有多少人?

查看答案和解析>>

科目: 来源: 题型:

【题目】(1)如图①,在△ABC,BAC=90AB=AC,直线m经过点ABD⊥直线mCE⊥直线m,垂足分别为点D.E证明:DE=BD+CE.

(2)如图②,(1)中的条件改为:在△ABC中,AB=ACD. A.E三点都在直线m上,并且有∠BDA=AEC=BAC,请问结论DE=BD+CE是否成立,若成立,请你给证明:若不存在,请说明理由。

(3)应用:如图③,在△ABC中,∠BAC是钝角,AB=AC,∠BAD>CAED. A.E三点都在直线m上,且∠BDA=AEC=BAC,只出现mBC的延长线交于点F,若BD=5DE=7EF=2CE,求△ABD与△ABF的面积之比。

查看答案和解析>>

科目: 来源: 题型:

【题目】A市有近20年的马拉松比赛历史,过去全程马拉松名额一直相对较少。而近几年,这一现状大大改变,很多想参加全程马拉松(简称全马)的跑者报不上名。所以该城市近两年也大幅增加全马的名额。2017年,参加全马的人数比半马的人少,但是2018年,2019年参加全马的人数呈上升趋势,且每年比前一年均增加25%(即2018年比2017年增加25%2019年比2018年增加25%),2019年,有12500全马参赛者。

1)求2017年、2018全马参赛人数;

2)据赞助食物的某商家反映:2017年与2018年该商家分别给参加全马半马的参赛者提供了不同价格的食物,每个全马参赛者获得的食物价值高于半马参赛者,2017年,商家提供食物共用去22万元;这两年商家是按同一个标准分别给全马半马参赛者提供食物(人太多,标准不可轻易提高),即使这样,2018年,虽然参加马拉松比赛的总人数与2017年一样多,但是由于全马参赛者人数刚好与半马参赛者人数调换了,赞助商比2017年多提供了p万元的食物;商家发现这p万元的食物刚好可以供400全马参赛者和400半马参赛者享用。求p的值。

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在中,点F是边BC的中点,连接AF并延长交DC的延长线于点E,连接AC、BE.

(1)求证:AB=CE;

(2)若,则四边形ABEC是什么特殊四边形?请说明理由.

查看答案和解析>>

同步练习册答案