科目: 来源: 题型:
【题目】在平面直角坐标系中,点A(0,m)和点B(n,0)分别在y轴和x轴的正半轴上,满足,连接线段AB,点C为AB上一动点.
(1)填空:m=_____,n=_____;
(2)如图,连接OC并延长至点D,使得DC=OC,连接AD.若△AOC的面积为2,求点D的坐标;
(3)如图,BC=OB,∠ABO的平分线交线段AO于点E,交线段OC于点F,连接EC.
求证:①△ACE为等腰直角三角形;
②BF-EF=OC.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,抛物线y=﹣x2+bx+c与x轴交于点A(﹣1,0)和点B,与y轴交于C(0,3),直线y=+m经过点C,与抛物线的另一交点为点D,点P是直线CD上方抛物线上的一个动点,过点P作PF⊥x轴于点F,交直线CD于点E,设点P的横坐标为m.
(1)求抛物线解析式并求出点D的坐标;
(2)连接PD,△CDP的面积是否存在最大值?若存在,请求出面积的最大值;若不存在,请说明理由;
(3)当△CPE是等腰三角形时,请直接写出m的值.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知等腰△ABC中,AB=AC,∠ABC的平分线交AC于D,过点A作AE // BC交BD的延长线于点E,∠CAE的平分线交BE于点F.
(1)①如图,若∠BAC=36o,求证:BD=EF;
②如图,若∠BAC=60o,求的值;
(2)如图,若∠BAC=60o,过点D作DG// BC,交AB于点G,点N为BC中点,点P, M分别是GD, BG上的动点,且∠PNM=60°. 求证:AP=PN=MN.
查看答案和解析>>
科目: 来源: 题型:
【题目】(1)问题发现:如图1,△ABC是等腰直角三角形,∠BAC=90°,AB=AC,四边形ADEF是正方形,点B、C分别在边AD、AF上,此时BD与CF的数量关系是 ;BD与CF位置关系是 .
(2)拓展探究:如图2,当△ABC绕点A逆时针旋转θ(0°<θ<90°)时,BD=CF成立吗?若成立,请证明;若不成立,请说明理由.
(3)解决问题:如图3,当△ABC绕点A逆时针旋转45°时,延长BD交CF于点H.
①求证:BD⊥CF;
②当AB=2,AD=3时,则线段DH的长为 .
查看答案和解析>>
科目: 来源: 题型:
【题目】为了贯彻落实市委政府提出的“精准扶贫”精神,某校特制定了一系列帮扶A、B两贫困村的计划,现决定从某地运送152箱鱼苗到A、B两村养殖,若用大小货车共15辆,则恰好能一次性运完这批鱼苗,已知这两种大小货车的载货能力分别为12箱/辆和8箱/辆,其运往A、B两村的运费如表:
车型 | 目的地 | |
A村(元/辆) | B村(元/辆) | |
大货车 | ||
800 | 900 | |
小货车 | 400 | 600 |
(1)求这15辆车中大小货车各多少辆?
(2)现安排其中10辆货车前往A村,其余货车前往B村,设前往A村的大货车为x辆,前往A、B两村总费用为y元,试求出y与x的函数解析式.
(3)在(2)的条件下,若运往A村的鱼苗不少于100箱,请你写出使总费用最少的货车调配方案,并求出最少费用.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在直角坐标系中,Rt△ABC的直角边AC在x轴上,∠ACB=90°,AC=1,反比例函数y=(k>0)的图象经过BC边的中点D(3,1).
(1)求这个反比例函数的表达式;
(2)若△ABC与△EFG成中心对称,且△EFG的边FG在y轴的正半轴上,点E在这个函数的图象上.
①求OF的长;
②连接AF,BE,证明四边形ABEF是正方形.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,山顶建有一座铁塔,塔高BC=80米,测量人员在一个小山坡的P处测得塔的底部B点的仰角为45°,塔顶C点的仰角为60°.已测得小山坡的坡角为30°,坡长MP=40米.求山的高度AB(精确到1米).(参考数据:≈1.414,≈1.732)
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,AB是⊙O的直径,点C为⊙O上一点,经过C作CD⊥AB于点D,CF是⊙O的切线,过点A作AE⊥CF于E,连接AC.
(1)求证:AE=AD.
(2)若AE=3,CD=4,求AB的长.
查看答案和解析>>
科目: 来源: 题型:
【题目】某服装店老板在武汉发现一款羽绒服,预测能畅销市场,就用a万元购进了x件.这款羽绒服面市后,果然十分畅销,很快售完.于是老板又在上海购进了同款羽绒服,所购数量比在武汉所购的数量多20%,单价贵20元,总进货款比前一次多23%.
(1)请用含a和x的代数式分别表示在武汉以及上海购进的羽绒服的单价(单位:元/件);
(2)若服装店老板两次进货共花费17.84万元,在销售这款羽绒服时每件定价都是 1200元,第二次销售后期由于天气转暖,服装还剩没有卖出,老板决定打8折销售,最后全部售完.两次销售,服装店老板共盈利多少元?
查看答案和解析>>
科目: 来源: 题型:
【题目】2018年3月,某市教育主管部门在初中生中开展了“文明礼仪知识竞赛”活动,活动结束后,随机抽取了部分同学的成绩(x均为整数,总分100分),绘制了如下尚不完整的统计图表.
调查结果统计表
组别 | 成绩分组(单位:分) | 频数 | 频率 |
A | 80≤x<85 | 50 | 0.1 |
B | 85≤x<90 | 75 | |
C | 90≤x<95 | 150 | c |
D | 95≤x≤100 | a | |
合计 | b | 1 |
根据以上信息解答下列问题:
(1)统计表中,a= ,b= ,c= ;
(2)扇形统计图中,m的值为 ,“C”所对应的圆心角的度数是 ;
(3)若参加本次竞赛的同学共有5000人,请你估计成绩在95分及以上的学生大约有多少人?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com